# Linear Algebra 

Lecture slides for Chapter 2 of Deep Learning
Ian Goodfellow
2016-06-24

Adapted by m.n. for CMPS 392

## About this chapter

- Not a comprehensive survey of all of linear algebra
- Focused on the subset most relevant to deep learning
- For a full introductory linear algebra course, I recommend the course and book of Gilbert strang.
- https://ocw.mit.edu/faculty/gilbert-strang/


## Scalars

- A scalar is a single number
- Integers, real numbers, rational numbers, etc.
- We denote it with italic font:

$$
a, n, x
$$

## Vectors

- A vector is a 1-D array of numbers:

$$
\boldsymbol{x}=\left[\begin{array}{c}
x_{1}  \tag{2.1}\\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right] .
$$

- Can be real, binary, integer, etc.
- Example notation for type and size:
$\mathbb{R}^{n}$


## Matrices

- A matrix is a 2-D array of numbers:

- Example notation for type and shape:

$$
\boldsymbol{A} \in \mathbb{R}^{m \times n}
$$

## Tensors

- A tensor is an array of numbers, that may have
- zero dimensions, and be a scalar
- one dimension, and be a vector
- two dimensions, and be a matrix
- or more dimensions.


## Matrix Transpose

$$
\begin{equation*}
\left(\boldsymbol{A}^{\top}\right)_{i, j}=A_{j, i} . \tag{2.3}
\end{equation*}
$$



Figure 2.1: The transpose of the matrix can be thought of as a mirror image across the main diagonal.

$$
\begin{equation*}
(\boldsymbol{A B})^{\top}=\boldsymbol{B}^{\top} \boldsymbol{A}^{\top} . \tag{2.9}
\end{equation*}
$$

## Matrix (Dot) Product

$$
\begin{align*}
\boldsymbol{C} & =\boldsymbol{A} \boldsymbol{B}  \tag{2.4}\\
C_{i, j} & =\sum_{k} A_{i, k} B_{k, j} .
\end{align*}
$$

(2.5)


## Identity Matrix

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Figure 2.2: Example identity matrix: This is $\boldsymbol{I}_{3}$.
$\forall \boldsymbol{x} \in \mathbb{R}^{n}, \boldsymbol{I}_{n} \boldsymbol{x}=\boldsymbol{x}$.

# Systems of Equations <br> $$
\begin{equation*} A x=b \tag{2.11} \end{equation*}
$$ 

## expands to

$$
\begin{gather*}
\boldsymbol{A}_{1,:} \boldsymbol{x}=b_{1}  \tag{2.12}\\
\boldsymbol{A}_{2,:} \boldsymbol{x}=b_{2}  \tag{2.13}\\
\ldots \\
\boldsymbol{A}_{m,:} \boldsymbol{x}=b_{m}
\end{gather*}
$$

(2.14)
(2.15)

## Solving Systems of Equations

- A linear system of equations can have:
- No solution
- Many solutions
- Exactly one solution: this means multiplication by the matrix is an invertible function


## Matrix Inversion

- Matrix inyerse:

$$
\begin{equation*}
\boldsymbol{A}^{-1} \boldsymbol{A}=\boldsymbol{I}_{n} \tag{2.21}
\end{equation*}
$$

- Solving a system using an inverse:

$$
\begin{gather*}
\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}  \tag{2.22}\\
\boldsymbol{A}^{-1} \boldsymbol{A} \boldsymbol{x}=\boldsymbol{A}^{-1} \boldsymbol{b}  \tag{2.23}\\
\boldsymbol{I}_{n} \boldsymbol{x}=\boldsymbol{A}^{-1} \boldsymbol{b} \tag{2.24}
\end{gather*}
$$

- Numerically unstable, but useful for abstract analysis


## Invertibility

- Matrix can't be inverted if...
- More rows than columns
- More columns than rows
- Redundant rows/columns ("linearly dependent", "low rank")


## Norms

- Functions that measure how "large" a vector is
- Similar to a distance between zero and the point represented by the vector
- $f(\boldsymbol{x})=0 \Rightarrow \boldsymbol{x}=\mathbf{0}$
- $f(\boldsymbol{x}+\boldsymbol{y}) \leq f(\boldsymbol{x})+f(\boldsymbol{y})$ (the triangle inequality)
- $\forall \alpha \in \mathbb{R}, f(\alpha \boldsymbol{x})=|\alpha| f(\boldsymbol{x})$


## Norms

- $L^{p}$ norm

$$
\|\boldsymbol{x}\|_{p}=\left(\sum_{i}\left|x_{i}\right|^{p}\right)^{\frac{1}{p}}
$$

- Most popular norm: L2 norm, p=2
- L1 norm, $p=1:\|\boldsymbol{x}\|_{1}=\sum_{i}\left|x_{i}\right|$.
- Max norm, infinite $p:\|x\|_{\infty}=\max _{i}\left|x_{i}\right|$.


## Special Matrices and Vectors

- Unit vector:

$$
\begin{equation*}
\|\boldsymbol{x}\|_{2}=1 \tag{2.36}
\end{equation*}
$$

- Symmetric Matrix:

$$
\begin{equation*}
\boldsymbol{A}=\boldsymbol{A}^{\top} . \tag{2.35}
\end{equation*}
$$

- Orthogonal matrix:

$$
\begin{align*}
& \boldsymbol{A}^{\top} \boldsymbol{A}=\boldsymbol{A} \boldsymbol{A}^{\top}=\boldsymbol{I} .  \tag{2.37}\\
& \boldsymbol{A}^{-1}=\boldsymbol{A}^{\top}
\end{align*}
$$

## Eigendecomposition

- Eigenvector and eigenvalue:

$$
\begin{equation*}
\boldsymbol{A} \boldsymbol{v}=\lambda \boldsymbol{v} \tag{2.39}
\end{equation*}
$$

- Eigendecomposition of a diagonalizable matrix:

$$
\begin{equation*}
\boldsymbol{A}=\boldsymbol{V} \operatorname{diag}(\boldsymbol{\lambda}) \boldsymbol{V}^{-1} . \tag{2.40}
\end{equation*}
$$

- Every real symmetric matrix has a real, orthogonal eigendecomposition:

$$
\begin{equation*}
\boldsymbol{A}=\boldsymbol{Q} \boldsymbol{\Lambda} \boldsymbol{Q}^{\top} \tag{2.41}
\end{equation*}
$$

## एff




## Singular Value Decomposition

- Similar to eigendecomposition
- More general; matrix need not be square

$$
\begin{equation*}
\boldsymbol{A}=\boldsymbol{U} \boldsymbol{D} \boldsymbol{V}^{\top} \tag{2.43}
\end{equation*}
$$

## Moore-Penrose Pseudoinverse $\boldsymbol{x}=\boldsymbol{A}^{+} \boldsymbol{y}$

- If the equation has:
- Exactly one solution: this is the same as the inverse.
- No solution: this gives us the solution with the smallest error $\|\boldsymbol{A x}-\boldsymbol{y}\|_{2}$.
- Many solutions: this gives us the solution with the smallest norm of $\boldsymbol{x}$.


## Computing the Pseudoinverse

The SVD allows the computation of the pseudoinverse:

$$
\begin{equation*}
\boldsymbol{A}^{+}=\boldsymbol{V} \boldsymbol{D}^{+} \boldsymbol{U}^{\top} \tag{2.47}
\end{equation*}
$$

## Trace

$$
\begin{equation*}
\operatorname{Tr}(\boldsymbol{A})=\sum_{i} \boldsymbol{A}_{i, i} . \tag{2.48}
\end{equation*}
$$

$\operatorname{Tr}(\boldsymbol{A B C})=\operatorname{Tr}(\boldsymbol{C A B})=\operatorname{Tr}(\boldsymbol{B C A})$
(2.51)

## Learning linear algebra

- Do a lot of practice problems
- Start out with lots of summation signs and indexing into individual entries
- Eventually you will be able to mostly use matrix and vector product notation quickly and easily

