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Probability 
• Sample space Ω: set of all outcomes of a random experiment
• Set of events ℱ : collection of possible outcomes of an experiment.
• Probability measure: 𝑃:ℱ → ℝ

q Axioms of probability 
o 𝑃 𝐴 ≥ 0 for all 𝐴 ∈ ℱ
o 𝑃 Ω = 1
o If 𝐴!, 𝐴", … are disjoint events then 

𝑃 /
#

𝐴# = 0
#

𝐴#
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Random variable
• Consider an experiment in which we flip 10 coins, and we want to 

know the number of coins that come up heads. 
• Here, the elements of the sample space Ω are 10-length 

sequences of heads and tails. 
• For example, we might have 

𝑤$ =< 𝐻,𝐻, 𝑇, 𝐻, 𝑇, 𝐻, 𝐻, 𝑇, 𝑇, 𝑇 >
• However, in practice, we usually do not care about the probability 

of obtaining any particular sequence of heads and tails. 
• Instead we usually care about real-valued functions of outcomes, 

such as 
q the number of heads that appear among our 10 tosses, 
q or the length of the longest run of tails. 

• These functions, under some technical conditions, are known as 
random variables: 𝑋:Ω → ℝ
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Discrete vs. continuous
• Discrete random variable: 

q 𝑃 𝑋 = 𝑘 = 𝑃 𝑤:𝑋 𝑤 = 𝑘
• Continuous random variable: 

q 𝑃 𝑎 ≤ 𝑋 ≤ 𝑏 = 𝑃 𝑤: 𝑎 ≤ 𝑋 𝑤 ≤ 𝑏

A cumulative distribution function (CDF):
𝑃(𝑋 ≤ 𝑥)
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Probability Mass Function
(discrete variable)

Example: uniform distribution: 
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Probability Density Function
(continuous variable)

Example: uniform distribution: 

The pdf at some point 𝑥 is not the 
probability of 𝑥: 𝑝 𝑥 ≠ 𝑃 x = 𝑥
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Computing Marginal 
Probability with the Sum Rule
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Conditional Probability
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Chain Rule of Probability
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Independence
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Conditional Independence
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Expectation

linearity of expectations:
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Variance and Covariance

Covariance matrix:
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Bernoulli Distribution
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Gaussian Distribution
Parametrized by variance:

Parametrized by precision:
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Gaussian Distribution

Figure 3.1
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Multivariate Gaussian

Parametrized by covariance matrix:

Parametrized by precision matrix:
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More Distributions
Exponential:

Laplace:

Dirac:
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Empirical Distribution
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Mixture Distributions

Figure 3.2

Gaussian mixture 
with three 

components
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Logistic Sigmoid

Commonly used to parametrize Bernoulli distributions
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Softplus Function

A 
smoothed 
version of 



(Goodfellow 2016)

Useful Properties
• 𝜎 𝑥 = %&'())

%&' ) +%&' $

•
,
,)
𝜎 𝑥 = 𝜎 𝑥 1 − 𝜎 𝑥

• 1 − 𝜎 𝑥 = 𝜎 −𝑥

• log 𝜎 𝑥 = −𝜁 −𝑥

•
,
,)
𝜁 𝑥 = 𝜎 𝑥

• ∀𝑥 ∈ 0,1 , 𝜎-! 𝑥 = log )
!-)

• ∀𝑥 > 0, 𝜁-! 𝑥 = log exp 𝑥 − 1

• 𝜁 𝑥 = ∫-.
) 𝜎 𝑦 𝑑𝑦

• 𝜁 𝑥 − 𝜁 −𝑥 = 𝑥
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Bayes’ Rule



Bayes Rule

𝑃(𝐴|𝐵) =
𝑃(𝐵|𝐴) 𝑃(𝐴)

𝑃(𝐵)

Posterior
Prior

Likelihood

Marginal 
likelihood

𝑃 𝐵 = $
!

𝑃 𝐵 𝐴 = 𝑎 𝑃(𝐴 = 𝑎)

computed by the total probability rule: 



Bag-of-words Naïve Bayes:

¨ Features: Wi is the word at position i
¨ Called “bag-of-words” because model is insensitive to word order or 

reordering: 
¤ In a bag-of-words model, each position is identically distributed

𝑃 𝑆𝑝𝑎𝑚 𝑊!,𝑊", … ,𝑊# ∝ 𝑃 𝑊! 𝑆𝑝𝑎𝑚 𝑃 𝑊" 𝑆𝑝𝑎𝑚 …𝑃 𝑊# 𝑆𝑝𝑎𝑚
¨ Start with a bunch of probabilities: 

¤ Prior distribution 𝑃 𝑆𝑝𝑎𝑚 , 𝑃 𝐻𝑎𝑚
¤ and the likelihood probabilities (The CPT tables) 𝑃(𝑊"|𝑌)

¨ Use standard inference to compute the posterior probabilities  
𝑃(𝑌|𝑊"…𝑊#)

¨ We can use the normalization trick: 
𝑃(𝐻𝑎𝑚|𝑊"…𝑊#)+𝑃 𝑆𝑝𝑎𝑚 𝑊"…𝑊# = 1

¨ Computing the log posterior (instead of the posterior) prevents numerical 
errors  



Example 

Word P(w|spam) P(w|ham) Total spam 
(log)

Total ham 
(log) 

(prior) 0.333 0.666 -1.1 -0.4

The 0.005 0.013 -5.27 -4.27

Year … … … …

2002

…



Bag of words exercise 

¨ Spam messages: 
¤ Offer is secret 
¤ Click secret link 
¤ Secret sports link 

¨ Ham messages:
¤ Play sports today 
¤ Went play sports 
¤ Secret sports event 
¤ Sports is today 
¤ Sports costs money 

¨ Size of vocabulary= ? 
¨ P(SPAM) = ? 
¨ PML(“Secret”|SPAM) = ?
¨ PML(“Secret”|HAM)=?
¨ how many parameters to 

represent the Naïve Bayes 
Network?

¨ P(SPAM|”Sports”)=? 
¨ P(SPAM| “Secret is secret”) = ?
¨ P(SPAM|”Today is secret”)=? 
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Change of Variables
Example of common mistake: 
𝑦 = 2

3
and 𝑥~𝑈(0,1)

𝑝4 𝑦 = 𝑝2
𝑥
2

⇒ 7𝑦 = 1 if 𝑥 ∈ [0,½]
𝑦 = 0 𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒

C𝑝 𝑦 𝑑𝑦 =
1
2 ‼

The right thing is: 𝑝4 𝑔(𝑥) 𝑑𝑦 = 𝑝2 𝑥 𝑑𝑥

𝑝2 𝑥 = 𝑝4 𝑔 𝑥
𝜕𝑦
𝜕𝑥

In higher dimensions: 
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Information theory
• Learning that an unlikely event has occurred is more 

informative that learning that a likely event has occurred! 
• Which statement has more information? 

q “The sun rose this morning” 
q “There was a solar eclipse this morning” 

• Independent events should have additive information: 
q Finding out that a tossed coin has come up heads 

twice has two time more information that finding out 
that a tossed coin has come up heads one time!
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Self-Information

Log base e => unit is nats
Log base 2 => unit is bits or shannons
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Entropy

• Entropy is a lower bound on the number of bits 
needded on average to encode symbols drawn from 
a distribution P.

• Distributions that are nearly deterministic have low 
entropy

• Distributions that are nearly uniform have high 
entropy 

Entropy:
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Entropy of a Bernoulli 
Variable

Figure 3.5

Bernoulli parameter

𝐻 𝜙 = (𝜙 − 1) log 1 − 𝜙 − 𝜙log(𝜙)
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Kullback-Leibler Divergence

• KL-divergence is the extra amount of information 
needed to send a message containing symbols 
drawn from P, when we use a code designed to 
minimize the length of messages containing 
symbols drawn from Q 

• KL-divergence is non-negative
• KL-divergence = 0 if P and Q are the same 

distribution 

KL divergence:
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KL-divergence
• It can be used as a distance measure between 

distributions 
• But it is not a true distance measure since it is not 

symmetric: 
q 𝐷56(𝑃| 𝑄 ≠ 𝐷56(𝑄| 𝑃
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The KL Divergence is 
Asymmetric

Figure 3.6

Mixture of two Gaussians for P, One Gaussian for Q
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Cross-entropy
• 𝐻 𝑃,𝑄 = 𝐻 𝑃 + 𝐷56(𝑃| 𝑄
= −𝔼2~8 (log 𝑃 𝑥 ) + 𝔼2~8(log 𝑃 𝑥 ) − 𝔼2~8(log𝑄 𝑥 )
= −𝔼2~8(log𝑄 𝑥 )

• Minimzing the cross entropy with respect to Q is 
equivalent to minimize the KL divergence!

• Remark: usually we consider 0 log 0 = 0
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Directed Model

Figure 3.7

𝑝 x = T
9

𝑝(x9|𝑃𝑎𝒢 x9 )


