Probability and Information
 Theory

Lecture slides for Chapter 3 of Deep Learning
www.deeplearningbook.org
Ian Goodfellow
2016-09-26
adapted by m.n. for CMPS 392

Probability

- Sample space Ω : set of all outcomes of a random experiment
- Set of events \mathcal{F} : collection of possible outcomes of an experiment.
- Probability measure: $P: \mathcal{F} \rightarrow \mathbb{R}$
- Axioms of probability
- $P(A \geq 0)$ for all $A \in \mathcal{F}$
- $P(\Omega)=1$
- If A_{1}, A_{2}, \ldots are disjoint events then

$$
P\left(\bigcup_{i} A_{i}\right)=\sum_{i}\left(A_{i}\right)
$$

Random variable

- Consider an experiment in which we flip 10 coins, and we want to know the number of coins that come up heads.
- Here, the elements of the sample space Ω are 10 -length sequences of heads and tails.
- For example, we might have

$$
\left.w_{0}=<H, H, T, H, T, H, H, T, T, T\right\rangle
$$

- However, in practice, we usually do not care about the probability of obtaining any particular sequence of heads and tails.
- Instead we usually care about real-valued functions of outcomes, such as
- the number of heads that appear among our 10 tosses,
- or the length of the longest run of tails.
- These functions, under some technical conditions, are known as random variables: $X: \Omega \rightarrow \mathbb{R}$

Discrete vs. continuous

- Discrete random variable:
- $P(X=k)=P(\{w: X(w)=k\})$
- Continuous random variable:

व $P(a \leq X \leq b)=P(\{w: a \leq X(w) \leq b\})$

A cumulative distribution function (CDF):

$$
P(X \leq x)
$$

Probability Mass Function (discrete variable)

- The domain of P must be the set of all possible states of x .
- $\forall x \in \mathrm{x}, 0 \leq P(x) \leq 1$. An impossible event has probability 0 and no state can be less probable than that. Likewise, an event that is guaranteed to happen has probability 1 , and no state can have a greater chance of occurring.
- $\sum_{x \in \mathrm{x}} P(x)=1$. We refer to this property as being normalized. Without this property, we could obtain probabilities greater than one by computing the probability of one of many events occurring.

Example: uniform distribution: $\quad P\left(\mathrm{x}=x_{i}\right)=\frac{1}{k}$

Probability Density Function (continuous variable)

- The domain of p must be the set of all possible states of x .
- $\forall x \in \mathrm{x}, p(x) \geq 0$. Note that we do not require $p(x) \leq 1$.
- $\int p(x) d x=1$.

Example: uniform distribution: $u(x ; a, b)=\frac{1}{b-a}$.
The pdf at some point x is not the probability of x : $p(x) \neq P(\mathrm{x}=x)$

Computing Marginal Probability with the Sum Rule

$$
\begin{align*}
& \forall x \in \mathrm{x}, P(\mathrm{x}=x)=\sum_{y} P(\mathrm{x}=x, \mathrm{y}=y) \tag{3.3}\\
& p(x)=\int p(x, y) d y \tag{3.4}
\end{align*}
$$

Conditional Probability

$$
\begin{equation*}
P(\mathrm{y}=y \mid \mathrm{x}=x)=\frac{P(\mathrm{y}=y, \mathrm{x}=x)}{P(\mathrm{x}=x)} . \tag{3.5}
\end{equation*}
$$

Chain Rule of Probability

$$
\begin{equation*}
P\left(\mathrm{x}^{(1)}, \ldots, \mathrm{x}^{(n)}\right)=P\left(\mathrm{x}^{(1)}\right) \Pi_{i=2}^{n} P\left(\mathrm{x}^{(i)} \mid \mathrm{x}^{(1)}, \ldots, \mathrm{x}^{(i-1)}\right) \tag{3.6}
\end{equation*}
$$

Independence

$$
\begin{equation*}
\forall x \in \mathrm{x}, y \in \mathrm{y}, p(\mathrm{x}=x, \mathrm{y}=y)=p(\mathrm{x}=x) p(\mathrm{y}=y) \tag{3.7}
\end{equation*}
$$

Conditional Independence

$\forall x \in \mathrm{x}, y \in \mathrm{y}, z \in \mathrm{z}, p(\mathrm{x}=x, \mathrm{y}=y \mid \mathrm{z}=z)=p(\mathrm{x}=x \mid \mathrm{z}=z) p(\mathrm{y}=y \mid \mathrm{z}=z)$.

Expectation

$$
\begin{align*}
& \mathbb{E}_{\mathbf{x} \sim P}[f(x)]=\sum_{x} P(x) f(x), \tag{3.9}\\
& \mathbb{E}_{\mathbf{x} \sim p}[f(x)]=\int p(x) f(x) d x
\end{align*}
$$

linearity of expectations:
$\mathbb{E}_{\mathrm{x}}[\alpha f(x)+\beta g(x)]=\alpha \mathbb{E}_{\mathrm{x}}[f(x)]+\beta \mathbb{E}_{\mathrm{x}}[g(x)]$,

Variance and Covariance

$$
\begin{equation*}
\operatorname{Var}(f(x))=\mathbb{E}\left[(f(x)-\mathbb{E}[f(x)])^{2}\right] . \tag{3.12}
\end{equation*}
$$

$\operatorname{Cov}(f(x), g(y))=\mathbb{E}[(f(x)-\mathbb{E}[f(x)])(g(y)-\mathbb{E}[g(y)])]$.
Covariance matrix:

$$
\begin{equation*}
\operatorname{Cov}(\mathbf{x})_{i, j}=\operatorname{Cov}\left(\mathrm{x}_{i}, \mathrm{x}_{j}\right) \tag{3.14}
\end{equation*}
$$

Bernoulli Distribution

$$
\begin{gather*}
P(\mathrm{x}=1)=\phi \tag{3.16}\\
P(\mathrm{x}=0)=1-\phi \tag{3.17}\\
P(\mathrm{x}=x)=\phi^{x}(1-\phi)^{1-x} \\
\mathbb{E}_{\mathrm{x}}[\mathrm{x}]=\phi \\
\operatorname{Var}_{\mathrm{x}}(\mathrm{x})=\phi(1-\phi)
\end{gather*}
$$

(3.18)
(3.19)
(3.20)

Gaussian Distribution

Parametrized by variance:

$$
\begin{equation*}
\mathcal{N}\left(x ; \mu, \sigma^{2}\right)=\sqrt{\frac{1}{2 \pi \sigma^{2}}} \exp \left(-\frac{1}{2 \sigma^{2}}(x-\mu)^{2}\right) . \tag{3.21}
\end{equation*}
$$

Parametrized by precision:

$$
\begin{equation*}
\mathcal{N}\left(x ; \mu, \beta^{-1}\right)=\sqrt{\frac{\beta}{2 \pi}} \exp \left(-\frac{1}{2} \beta(x-\mu)^{2}\right) . \tag{3.22}
\end{equation*}
$$

Gaussian Distribution

Multivariate Gaussian

Parametrized by covariance matrix:
$\mathcal{N}(\boldsymbol{x} ; \boldsymbol{\mu}, \boldsymbol{\Sigma})=\sqrt{\frac{1}{(2 \pi)^{n} \operatorname{det}(\boldsymbol{\Sigma})}} \exp \left(-\frac{1}{2}(\boldsymbol{x}-\boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1}(\boldsymbol{x}-\boldsymbol{\mu})\right)$.

Parametrized by precision matrix:
$\mathcal{N}\left(\boldsymbol{x} ; \boldsymbol{\mu}, \boldsymbol{\beta}^{-1}\right)=\sqrt{\frac{\operatorname{det}(\boldsymbol{\beta})}{(2 \pi)^{n}}} \exp \left(-\frac{1}{2}(\boldsymbol{x}-\boldsymbol{\mu})^{\top} \boldsymbol{\beta}(\boldsymbol{x}-\boldsymbol{\mu})\right)$.

More Distributions

Empirical Distribution

$$
\hat{p}(\boldsymbol{x})=\frac{1}{m} \sum_{i=1}^{m} \delta\left(\boldsymbol{x}-\boldsymbol{x}^{(i)}\right)
$$

Mixture Distributions

$$
\begin{equation*}
P(\mathrm{x})=\sum_{i} P(\mathrm{c}=i) P(\mathrm{x} \mid \mathrm{c}=i) \tag{3.29}
\end{equation*}
$$

Gaussian mixture
with three
components

Figure 3.2

Logistic Sigmoid

Figure 3.3: The logistic sigmoid function.
Commonly used to parametrize Bernoulli distributions

Softplus Function

A
smoothed
Figure 3.4: The softplus function.
version of $x^{+}=\max (0, x)$.

Useful Properties

- $\sigma(x)=\frac{\exp (x)}{\exp (x)+\exp (0)}$
- $\frac{d}{d x} \sigma(x)=\sigma(x)(1-\sigma(x))$
- $1-\sigma(x)=\sigma(-x)$
- $\log (\sigma(x))=-\zeta(-x)$
- $\frac{d}{d x} \zeta(x)=\sigma(x)$
- $\forall x \in(0,1), \sigma^{-1}(x)=\log \left(\frac{x}{1-x}\right)$
- $\forall x>0, \zeta^{-1}(x)=\log (\exp (x)-1)$
- $\zeta(x)=\int_{-\infty}^{x} \sigma(y) d y$
- $\zeta(x)-\zeta(-x)=x$

Bayes' Rule

$$
\begin{equation*}
P(\mathrm{x} \mid \mathrm{y})=\frac{P(\mathrm{x}) P(\mathrm{y} \mid \mathrm{x})}{P(\mathrm{y})} \tag{3.42}
\end{equation*}
$$

Bayes Rule

computed by the total probability rule:

$$
P(B)=\sum_{a} P(B \mid A=a) P(A=a)
$$

Bag-of-words Naïve Bayes:

\square Features: W_{i} is the word at position i
\square Called "bag-of-words" because model is insensitive to word order or reordering:
\square In a bag-of-words model, each position is identically distributed
$P\left(\operatorname{Spam} \mid W_{1}, W_{2}, \ldots, W_{N}\right) \propto P\left(W_{1} \mid\right.$ Spam $) P\left(W_{2} \mid\right.$ Spam $) \ldots P\left(W_{N} \mid\right.$ Spam $)$
\square Start with a bunch of probabilities:
\square Prior distribution P (Spam), P (Ham)
\square and the likelihood probabilities (The CPT tables) $P\left(W_{i} \mid Y\right)$
\square Use standard inference to compute the posterior probabilities $P\left(Y \mid W_{1} \ldots W_{n}\right)$
\square We can use the normalization trick: $P\left(\operatorname{Ham} \mid W_{1} \ldots W_{n}\right)+P\left(\operatorname{Spam} \mid W_{1} \ldots W_{n}\right)=1$
\square Computing the log posterior (instead of the posterior) prevents numerical errors

Example

$P(Y)$	$P(W \mid$ spam $)$	$P(W \mid$ ham $)$
ham : 0.66	the : 0.0156	the : 0.0210
spam: 0.33	to : 0.0153	to : 0.0133
	and : 0.0115	of : 0.0119
	of : 0.0095	2002: 0.0110
	you : 0.0093	with: 0.0108
	$\mathrm{a}: 0.0086$	from: 0.0107
	with: 0.0080	and : 0.0105
	from: 0.0075	a : 0.0100
	...	\ldots

Word	$\mathrm{P}(\mathrm{w} \mid$ spam $)$	$\mathrm{P}(\mathrm{w} \mid$ ham $)$	Total spam (log)	Total ham (log)
(prior)	0.333	0.666	-1.1	-0.4
The	0.005	0.013	-5.27	-4.27
Year	\ldots	\ldots	\ldots	\ldots
2002				
\ldots				

Bag of words exercise

\square Spam messages:
\square Offer is secret
\square Click secret link
\square Secret sports link
\square Ham messages:
\square Play sports today
\square Went play sports
\square Secret sports event
\square Sports is today
\square Sports costs money
\square Size of vocabulary=?
$\square \mathrm{P}($ SPAM $)=$?
$\square P_{\text {ML }}$ ("Secret" \mid SPAM) $=$?
$\square P_{\text {ML }}$ ("Secret" $\left.\mid H A M\right)=$?
\square how many parameters to represent the Naïve Bayes Network?
\square P(SPAM|"Sports")=?
\square P(SPAM| "Secret is secret") = ?
$\square \mathrm{P}($ SPAM |"Today is secret")=?

Change of Variables

Example of common mistake:
$y=\frac{x}{2}$ and $x \sim U(0,1)$

$$
\begin{gathered}
p_{y}(y)=p_{x}\left(\frac{x}{2}\right) \Rightarrow\left\{\begin{array}{c}
y=1 \text { if } x \in[0,1 / 2] \\
y=0 \text { elsewhere }
\end{array}\right. \\
\int p(y) d y=\frac{1}{2}!!
\end{gathered}
$$

The right thing is: $\left|p_{y}(g(x)) d y\right|=\left|p_{x}(x) d x\right|$

$$
p_{x}(x)=p_{y}(g(x))\left|\frac{\partial y}{\partial x}\right|
$$

In higher dimensions:

$$
p_{x}(\boldsymbol{x})=p_{y}(g(\boldsymbol{x}))\left|\operatorname{det}\left(\frac{\partial g(\boldsymbol{x})}{\partial \boldsymbol{x}}\right)\right| .
$$

Information theory

- Learning that an unlikely event has occurred is more informative that learning that a likely event has occurred!
- Which statement has more information?
- "The sun rose this morning"
- "There was a solar eclipse this morning"
- Independent events should have additive information:
- Finding out that a tossed coin has come up heads twice has two time more information that finding out that a tossed coin has come up heads one time!

Self-Information

$$
\begin{equation*}
I(x)=-\log P(x) \tag{3.48}
\end{equation*}
$$

Log base e $=>$ unit is nats
Log base $2=>$ unit is bits or shannons

Entropy

Entropy:

$$
\begin{equation*}
H(\mathrm{x})=\mathbb{E}_{\mathrm{x} \sim P}[I(x)]=-\mathbb{E}_{\mathrm{x} \sim P}[\log P(x)] \tag{3.49}
\end{equation*}
$$

- Entropy is a lower bound on the number of bits needded on average to encode symbols drawn from a distribution P.
- Distributions that are nearly deterministic have low entropy
- Distributions that are nearly uniform have high entropy

Entropy of a Bernoulli Variahlo

Figure 3.5

Kullback-Leibler Divergence

KL divergence:

$$
\begin{equation*}
D_{\mathrm{KL}}(P \| Q)=\mathbb{E}_{\mathrm{x} \sim P}\left[\log \frac{P(x)}{Q(x)}\right]=\mathbb{E}_{\mathrm{x} \sim P}[\log P(x)-\log Q(x)] . \tag{3.50}
\end{equation*}
$$

- KL-divergence is the extra amount of information needed to send a message containing symbols drawn from P, when we use a code designed to minimize the length of messages containing symbols drawn from Q
- KL-divergence is non-negative
- KL-divergence $=0$ if P and Q are the same distribution

KL-divergence

- It can be used as a distance measure between distributions
- But it is not a true distance measure since it is not symmetric:
- $D_{K L}(P \| Q) \neq D_{K L}(Q \| P)$

The KL Divergence is Asymmetric

Mixture of two Gaussians for P, One Gaussian for Q

Figure 3.6

Cross-entropy

- $H(P, Q)=H(P)+D_{K L}(P \| Q)$
$=-\mathbb{E}_{x \sim P}(\log P(x))+\mathbb{E}_{x \sim P}(\log P(x))-\mathbb{E}_{x \sim P}(\log Q(x))$
$=-\mathbb{E}_{x \sim P}(\log Q(x))$
- Minimzing the cross entropy with respect to Q is equivalent to minimize the KL divergence!
- Remark: usually we consider $0 \log 0=0$

Directed Model

Figure 3.7

$$
\begin{align*}
& p(\mathrm{x})=\prod_{i} p\left(\mathrm{x}_{i} \mid P a_{\mathcal{G}}\left(\mathrm{x}_{i}\right)\right) \\
& p(\mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d}, \mathrm{e})=p(\mathrm{a}) p(\mathrm{~b} \mid \mathrm{a}) p(\mathrm{c} \mid \mathrm{a}, \mathrm{~b}) p(\mathrm{~d} \mid \mathrm{b}) p(\mathrm{e} \mid \mathrm{c}) . \tag{3.54}
\end{align*}
$$

