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Numerical concerns for implementations 
of deep learning algorithms

• Algorithms are often specified in terms of real numbers; 
real numbers cannot be implemented in a finite computer

q Does the algorithm still work when implemented with a 
finite number of bits?

• Do small changes in the input to a function cause large 
changes to an output?

q Rounding errors, noise, measurement errors can cause 
large changes

q Iterative search for best input is difficult
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Roadmap
• Iterative Optimization
• Rounding error, underflow, overflow
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Iterative Optimization
• Gradient descent
• Curvature
• Constrained optimization
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Gradient-based optimization
• Optimization is the task of minimizing or maximizing 

some function 𝑓(𝒙) by altering 𝒙
• 𝑓 𝑥 + 𝜖 ≈ 𝑓 𝑥 + 𝜖𝑓! 𝑥

• 𝑓 𝑥 − 𝜖 𝑠𝑖𝑔𝑛 𝑓! 𝑥 < 𝑓 𝑥 for small 𝜖

• This technique is called gradient descent (Cauchy, 
1847) 
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Gradient Descent

Figure 4.1
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Approximate Optimization

Figure 4.3
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We usually don’t even reach 
a local minimum
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Deep learning optimization 
way of life

• Pure math way of life:
q Find literally the smallest value of f(x)
q Or maybe: find some critical point of f(x) where 

the value is locally smallest
• Deep learning way of life:

q Decrease the value of f(x) a lot
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Iterative Optimization
• Gradient descent
• Curvature
• Constrained optimization
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Critical Points (𝑓’(𝑥) = 0)

Figure 4.2
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Saddle Points

Figure 4.5
(Gradient descent escapes, 

see Appendix C of “Qualitatively 
Characterizing Neural Network 

Optimization Problems”)

Saddle points attract 
Newton’s method
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Multiple dimensions
• The gradient of 𝑓 is the vector conatining the partial 

derivatives: 𝛻𝒙 𝑓 𝒙
• Critical point is when all elements of the gradient are 0 
• The directional derivative is the slope of the function 
𝑓(𝒙 + 𝛼 𝒖 ) (with respect to 𝛼) 

•
"
"#
𝑓 𝒙 + 𝛼𝒖 = "

"#
𝑓 𝒙 + 𝛻$% 𝑓 𝒙 𝛼𝒖 + 𝑂(𝛼&) =

𝛻$% 𝑓 𝒙 𝒖 + 𝑂 𝛼

•
"
"#
𝑓 𝒙 + 𝛼𝒖 #'( = 𝛻$% 𝑓 𝒙 𝒖

• The directional derivative is the projection of the gradient 
onto the vector 𝒖
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The best u is in the opposite 
direction of the gradient! 

• To minimize 𝑓, find the direction 𝑢 in which 𝑓
decreases the fastest: 
q min

𝐮,𝒖!𝒖%&
𝒖'𝛻𝒙 𝑓 𝒙 =

min
𝐮,𝒖!𝒖%&

𝐮 ) 𝛻𝒙 𝑓 𝒙 )cos 𝜃 =

min cos 𝜃 = −1
q Take 𝒙! = 𝒙 − 𝜖𝛻𝒙 𝑓 𝒙
q 𝜖 is called the learning rate 
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What is the best 𝜖 ?
• Constant small 𝜖
• Solve for 𝜖 that makes the directional derivative 

vanish 
• Line search 
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Beyond the gradient: Curvature

The second derivative tells us how the first 
derviative will change as we vary the input
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Second derivative
• If	the	gradient	=	1	and	we	make	a	step	𝜖 along	the	
negative	gradient:
q 𝑓’’ = 0 : no cruvature, flat line (𝑓 decreases by 𝜖)
q 𝑓” < 0 : curves downward (𝑓 decreases by more 

than 𝜖 ) 
q 𝑓” > 0 : curves upward (𝑓 decreases by less than 
𝜖) 
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Second derivative – multiple 
dimensions

• The second order partial derivatives are collected in 
the Hessian matrix 𝐻

• If the second oder partial derivatives are 
continuous, we have *"

*+#*+$
𝑓 𝒙 = *"

*+$*+#
𝑓 𝒙 . 𝐻 is 

symmetric. 
• The directional  second derivative: 

q
!!

!"!
𝑓 𝒙 + 𝛼𝒖 = !

!"
𝑓 𝒙 + 𝛻#$ 𝑓 𝒙 𝛼𝒖 + "!

%
𝑢$𝐻𝑢 + 𝑂 𝛼&

q
*"

*,"
𝑓 𝒙 + 𝛼𝒖 ,%- = 𝑢'𝐻𝑢
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• 𝐻 can be decomposed into 𝑄Λ𝑄" where 𝑄 is an orthogonal 
basis of eigen vectors 

• directional second derivative along direction d is 𝒅"𝐻𝒅
q 𝒅 = ∑𝑑#𝒗𝒊
q 𝒅"𝐻𝒅 = ∑𝜆#𝑑#%

Directional Second 
Derivatives

• The maximum eigen 
value determines the 
maximum second 
derivative 

• The minimum eigen 
value determines the 
minumum second 
derivative 
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Predicting optimal step size 
using Taylor series

Expected 
improvement

Correction 
term

*
*.

𝑓(𝑥 - ) − 𝜖𝒈'𝒈 + &
)
𝜖)𝒈'𝐻𝒈 =

−𝒈'𝒈+ 𝜖𝒈'𝐻𝒈=0 
⇒𝜖∗ = 𝒈!𝒈

𝒈!1𝒈

When 𝒈'𝐻𝒈 > 𝟎
Solve for optimal step size: If 𝒈'𝐻𝒈 ≤ 𝟎:

Negative curvature
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Optimal step
• When 𝒈'𝐻𝒈 > 𝟎:

q If 𝒈 aligns with the eigen vector corresponding to 
𝜆_𝑚𝑎𝑥 of 𝐻: 

𝜖∗ =
1

𝜆_𝑚𝑎𝑥

Big gradients speed you up

Big eigenvalues slow you 
down if you align with their 

eigenvectors
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Condition Number

When the condition number is large,
sometimes you hit large eigenvalues and 

sometimes you hit small ones.
The large ones force you to keep the learning 
rate small, and miss out on moving fast in the 

small eigenvalue directions.
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Gradient Descent and Poor 
Conditioning

Figure 4.6
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Newton’s Method
𝑓 𝒙 ≈ 𝑓 𝒙(𝟎) + 𝒙 − 𝒙(𝟎)

$
𝛻𝒙𝑓 𝒙 𝟎 + &

' 𝒙 − 𝒙(𝟎)
$
𝐻 𝑓 𝒙(𝟎) 𝒙 − 𝒙(𝟎)

Solve for the critical point 𝛻𝒙𝑓 𝒙 𝟎 + 𝐻 𝑓 𝒙(𝟎) 𝒙 − 𝒙(𝟎) = 0

𝒙∗ = 𝒙(𝟎) − 𝐻*+ 𝑓 𝒙(𝟎) 𝛻𝒙𝑓 𝒙 𝟎

• If 𝑓 is positive definite quadratic function:
q When 𝑓 is truly quadratic, apply once to jump to the minimum 
q When 𝑓 is not truly quadratic, apply multiple times 
q Useful when close to a local minimum (where all Hessian eigen values are 

positive)
q Bad near a saddle point 

• Gradient descent has the advantage to not get attracted to saddle points
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Iterative Optimization
• Gradient descent
• Curvature
• Constrained optimization



(Goodfellow 2016)

KKT Multipliers

In this book, mostly used for 
theory

(e.g.: show Gaussian is highest 
entropy distribution)

In practice, we usually
just project back to the

constraint region after each 
step
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Roadmap
• Iterative Optimization
• Rounding error, underflow, overflow
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Numerical Precision: A deep 
learning super skill

• Often deep learning algorithms “sort of work”
q Loss goes down, accuracy gets within a few 

percentage points of state-of-the-art
q No “bugs” per se

• Often deep learning algorithms “explode” (NaNs, 
large values)

• Culprit is often loss of numerical precision
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Rounding and truncation 
errors

• In a digital computer, we use float32 or similar 
schemes to represent real numbers

• A real number x is rounded to x + delta for some 
small delta

• Overflow: large x replaced by inf
• Underflow: small x replaced by 0
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Example
• Adding a very small number to a larger one may 

have no effect. This can cause large changes 
downstream:

>>> a = np.array([0., 1e-8]).astype('float32')
>>> a.argmax()
1
>>> (a + 1).argmax()
0
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Secondary effects
• Suppose we have code that computes x-y
• Suppose x overflows to inf
• Suppose y overflows to inf
• Then x - y = inf - inf = NaN
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exp
• exp(x) overflows for large x

q Doesn’t need to be very large

q float32: 89 overflows

q Never use large x

• exp(x) underflows for very negative x

q Possibly not a problem

q Possibly catastrophic if exp(x) is a denominator, an argument 
to a logarithm, etc.
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Subtraction
• Suppose x and y have similar magnitude
• Suppose x is always greater than y
• In a computer, x - y may be negative due to 

rounding error
• Example: variance

Safe
Dangerous
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log and sqrt
• log(0) = - inf
• log(<negative>) is imaginary, usually nan in 

software
• sqrt(0) is 0, but its derivative has a divide by zero
• Definitely avoid underflow or round-to-negative in 

the argument!
• Common case: standard_dev = sqrt(variance)
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log exp
• log exp(x) is a common pattern
• Should be simplified to x
• Avoids:

q Overflow in exp
q Underflow in exp causing -inf in log
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Which is the better hack?
• normalized_x = x / st_dev

• eps = 1e-7

• Should we use

q st_dev = sqrt(eps + variance)

q or st_dev = eps + sqrt(variance) ?

• What if variance is implemented safely and will never 
round to negative?
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log(sum(exp))
• Naive implementation: 

tf.log(tf.reduce_sum(tf.exp(array))
• Failure modes:

q If any entry is very large, exp overflows
q If all entries are very negative, all exps 

underflow… and then log is -inf
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Stable version

mx = tf.reduce_max(array)
safe_array = array - mx
log_sum_exp = mx + tf.log(tf.reduce_sum(exp(safe_array))

Built in version:
tf.reduce_logsumexp
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Why does the logsumexp 
trick work?

• Algebraically equivalent to the original version:
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Why does the logsumexp 
trick work?

• No overflow:
q Entries of safe_array are at most 0

• Some of the exp terms underflow, but not all
q At least one entry of safe_array is 0
q The sum of exp terms is at least 1
q The sum is now safe to pass to the log
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Softmax
• Softmax: use your library’s built-in softmax function

• If you build your own, use:
• Similar to logsumexp

safe_logits = logits - tf.reduce_max(logits)
softmax = tf.nn.softmax(safe_logits)
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Cross-entropy
• Cross-entropy loss for softmax

(and sigmoid) has both 
softmax and logsumexp in it

Compute it using the logits not 
the probabilities
• The probabilities lose gradient 

due to rounding error where 
the softmax saturates

• Use 
tf.nn.softmax_cross_entrop
y_with_logits or similar

• If you roll your own, use the 
stabilization tricks for softmax
and logsumexp
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Sigmoid
• Use your library’s built-in sigmoid function
• If you build your own:

q Recall that sigmoid is just softmax with one of the 
logits hard-coded to 0
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Bug hunting strategies
q If you increase your learning rate and the loss 

gets stuck, you are probably rounding your 
gradient to zero somewhere: maybe computing 
cross-entropy using probabilities instead of logits

q For correctly implemented loss, too high of 
learning rate should usually cause explosion
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Bug hunting strategies
• If you see explosion (NaNs, very large values) 

immediately suspect:

q log

q exp

q sqrt

q division

• Always suspect the code that changed most recently
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Watch
• https://www.youtube.com/watch?v=XlYD8jn1ayE&li

st=PLoWh1paHYVRfygApBdss1HCt-TFZRXs0k

https://www.youtube.com/watch%3Fv=XlYD8jn1ayE&list=PLoWh1paHYVRfygApBdss1HCt-TFZRXs0k

