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Machine Learning 
• A computer program is said to learn from 

experience 𝐸 with respect to some class of tasks 𝑇
and performance measure 𝑃, if its performance at 
tasks in 𝑇, as measured by 𝑃, improves with 
experience 𝐸 (Tom M. Michell, 1997)

• Example
q 𝐸: the experience of playing thousands of games
q 𝑇: playing checkers game
q P: the fraction of games it wins against human 

opponents
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The task, T
• Tasks are usually described in terms of how the 

machine learning should process an example:     
𝑥 ∈ ℝ! where each entry 𝑥" is a feature 
q Classification: Learn 𝑓:ℝ! → 1, . . , k

o y = 𝑓(𝑥) : assigns the input to the category with 
numerical code 𝑦

o Example: object recognition 
q Classification with missing inputs: learn a set 

of functions 
o Example: medical diagnosis  
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The task, T
q Regression: Learn 𝑓:ℝ! → ℝ

o Example: Predict claim amount for an insured 
person

q Transcription: unstructured representation to 
discrete textual form 
o Example: optical character recognition, speech 

recognition
q Machine Translation: Sequence to sequence

o Example: translate English to French
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The task, T
q Structured output: output is a vector or data 

structure of values that are tightly interrelated 
o Example: parsing natural language sentence 

into a tree that describes grammatical structure 
by tagging nodes of the tree as being verbs, 
nouns, etc. 

o image segmentation: assigning a pixel to a 
segment 

o Image captioning
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The task, T
q Anomaly detection: flag unusual or atypical 

events 
o Credit card fraud detection  

q Synthesis and sampling: generate examples 
that are similar to those in the training data 
o Genreate textures for video games
o Speech synthesis 

q Imputation of missing values: predict the 
values of the missing entries  
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The task, T
q Denoising: 𝑓: 3𝑥 ∈ ℝ! → 𝑥 ∈ ℝ!

o Predict clean example from corrupted example
o 𝑝 𝑥 5𝑥 =?

q Density estimation or probability mass 
estimation
o 𝑝#$%&'(𝒙): ℝ! → ℝ (x can be discrete or 

continuous) 
o Example: 𝑝#$%&'(𝑥"|𝒙(𝒊)



(Goodfellow 2016)

The performance measure, P
• Accuracy: 

q The proportion of examples for which the model produces 
the correct output 

• Error rate (0-1 loss):
q The proportion of examples for which the model produces 

incorrect output 
• Average log-probability of some examples (for density 

estimation)
• It is difficult sometimes, to decide what should be measured
• It is imparactical sometimes to measure an implicit 

performance metric
• Evaluate the performance measure using a test set 
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The experience, E
• Supervised learning: 𝑝(𝑦|𝒙)

q Experience is a labeled dataset (or datapoints)
q Each datapoint has a label or target 

• Unsupervised learning: 𝑝(𝒙)
q Experience is an unlabeled dataset 
q Clustering, learning probability distribution, denoising, etc. 

• The line between supervised and unsupervised is often 
blurred 
q 𝑝 𝒙 = ∏!"#

$ 𝑝(𝑥!|𝑥#, … , 𝑥!%# )

q 𝑝 𝑦 𝒙 = & 𝒙,)
∑!" & 𝒙,)"
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The experience, E
• Semi-Supervised learning:

q Some examples include supervision targets, but 
others do not. 

• Multi-instance learning:
q A collection of examples is labeled as containing 

an example of a class
• Reinforcement learning:

q Interaction with an environment
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A dataset 
• Design matrix X: 

q Each row is an example 
q Each column is a feature 
q Example: iris dataset: 𝑋 ∈ ℝ*+,×.

• Vector of labels y
q Example: 0 is a person, 1 is a car, 2 is a cat, etc.
q The label can be a set of words (e.g. 

transcription)  
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Example: Linear regression
• Task: regression problem ℝ! → ℝ

q #𝑦 = 𝒘𝑻 𝒙
• Performance measure: 

q Have a test set: 𝑿𝒕𝒆𝒔𝒕, 𝒚𝒕𝒆𝒔𝒕

𝑀𝑆𝐸&'(& =
1
𝑚
0
)

1𝒚𝒕𝒆𝒔𝒕 − 𝒚𝒕𝒆𝒔𝒕 )
*

=
1
𝑚

1𝒚𝒕𝒆𝒔𝒕 − 𝒚𝒕𝒆𝒔𝒕 *
*

• Experience
q 𝑿𝒕𝒓𝒂𝒊𝒏, 𝒚𝒕𝒓𝒂𝒊𝒏

q Minimize 𝑀𝑆𝐸&/0)!
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Linear regression
• 𝛻𝒘𝑀𝑆𝐸012"! = 0

•
*

#!"#$%
𝛻𝒘 𝑿𝒕𝒓𝒂𝒊𝒏𝒘− 𝒚𝒕𝒓𝒂𝒊𝒏 7 𝑿𝒕𝒓𝒂𝒊𝒏𝒘− 𝒚𝒕𝒓𝒂𝒊𝒏 = 0

• (𝑿𝒕𝒓𝒂𝒊𝒏𝑻𝑿𝒕𝒓𝒂𝒊𝒏)𝒘 = 𝑿𝒕𝒓𝒂𝒊𝒏𝑻𝒚𝒕𝒓𝒂𝒊𝒏 (normal	equations)	

• We can solve for O𝑦 = 𝒘𝑻 𝒙 + 𝑏 using a simple trick
• b is called the bias term (to not confound with 

statistical bias that will be discussed later)  



(Goodfellow 2016)

Linear Regression

Figure 5.1
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Capacity, overfitting and 
underfitting 

• Generalization: ability to perform well on previously 
unobserved data 

• i.i.d assumptions: 
q The examples in each dataset are independent 

from each other, 
q and that the train set and test set are identically 

distributed, drawn from the same probability 
distribution as each other.

q We call that shared underlying distribution the 
data generating distribution, denoted 𝑝%202
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Capacity, overfitting and 
underfitting 

• For some fixed value w, the expected training set 
error is exactly the same as the expected test set 
error, because both expectations are formed using 
the same dataset sampling process.

• In practice: 
q expected test set error > expected train set error 

• We need ability to: 
q 1. Make the training error small. (underfitting)
q 2. Make the gap between training and test error 

small. (overfitting)
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Capacity, overfitting and 
underfitting 

• Underfitting occurs when the model is not able to 
obtain a sufficiently low error value on the training 
set. 

• Overfitting occurs when the gap between the 
training error and test error is too large.

• Informally, a model’s capacity is its ability to fit a 
wide variety of functions.
q Low capacity may cause underfitting 
q High capacity may cause overfitting 
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Hypothesis space
• One way to control the capacity of a learning 

algorithm is by choosing its hypothesis space, 
q the set of functions that the learning algorithm is 

allowed to select as being the solution.
q For example, linear regression has the set of all 

linear functions of its input
q To increase capacity: (model is polynomial of 

degree 9) 

O𝑦 = 𝑏 +R
"9*

:

𝑤"𝑥"
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Underfitting and Overfitting 
in Polynomial Estimation

Degree 2 Degree 9: infinitely 
many solutions  

Degree 1
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Capacity 
• Representational capacity: finding the best function 

within a family of functions 
• Effective capacity may be less than the 

representational capacity because it is hard to find the 
best function 

• Occam’s razor: Among competing hypotheses that 
explain known observations equally well, one should 
choose the “simplest” one.

• Statistical learning theory shows that the discrepancy 
between training error and generalization error is 
bounded from above by a quantity that grows as the 
model capacity grows but shrinks as the number of 
training examples increases
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Generalization and Capacity

Figure 5.3
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High capacity: non-
parametric models

• Nearest neighbor regression 

O𝑦 = 𝑦" where 𝑖 = argmin 𝑿𝒊,: − 𝒙 =
=



(Goodfellow 2016)

Bayes error
• The error incurred by an oracle making predictions 

from the true distribution 𝑝 𝒙, 𝑦 .
• This error is due to: 

q There may still be noise in the distribution 
q 𝑦 might be inherently stochastic 
q 𝑦 may be deterministic but involves other 

variables besides 𝒙
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Training Set Size
moderate amount of 
noise added to a 
degree-5 polynomial
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The no Free lunch theorem
• Averaged over all possible data generating distributions, 

every classification algorithm has the same error rate 
when classifying previously unobserved points.

• In some sense, no machine learning algorithm is 
universally any better than any other.

• The most sophisticated algorithm we can conceive of 
has the same average performance (over all possible 
tasks) as merely predicting that every point belongs to 
the same class.
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No free lunch
• The goal of machine learning research is not to 

seek a universal learning algorithm or the absolute 
best learning algorithm. 

• Instead, our goal is to understand what kinds of 
distributions are relevant to the “real world” 
q and what kinds of machine learning algorithms 

perform well on data drawn distributions we care 
about.
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Regularization 
• We can give a learning algorithm a preference for 

one solution in its hypothesis space to another.
q both functions are eligible, but one is preferred.

• Example: linear regression with weight decay:
𝐽 𝑤 = 𝑀𝑆𝐸012"! + 𝜆𝒘𝑻𝒘

• We are expressing a preference for the weights to 
have smaller L2 norm 
q Larger 𝜆 forces the weights to become smaller 
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Weight Decay

The true function is quadratic, 
but here we use only models with degree 9
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Regularization
• Regularization is any modification we make to a 

learning algorithm that is intended to reduce its 
generalization error but not its training error. 

• Regularization is one of the central concerns of the 
field of machine learning
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Hyperparameters 
• The values of hyperparameters are not adapted by 

the learning algorithm itself
• Polynomial regression hyperparameters:

q Degree of the polynomial 
q 𝜆 (control of the weight decay)  

• To set the hyperparameters, we need a validation 
set
q Typically, one uses about 80% of the training data 

for training and 20% for validation.
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Cross validation
• It is used to estimate generalization error of a learning 

algorithm A when the given dataset D is too small for a 
simple train/test or train/valid split to yield accurate 
estimation of generalization error

• In k-fold cross-validation a partition of the dataset is 
formed by splitting it into k non-overlapping subsets. 
q The test error may then be estimated by taking the 

average test error across k trials. On trial i, the i-th 
subset of the data is used as the test set and the rest 
of the data is used as the training set.



(Goodfellow 2016)

Cross validation
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Point estimation 
• Provides the single “best” prediction of some quantity of 

interest
• can be a single parameter or a vector of parameters in 

some parametric model
• A point estimator or statistic is any function of the data 

(assuming i.i.d. samples):
3𝜽 = 𝑔(𝒙 𝟏 , 𝒙 𝟐 , … , 𝒙 𝒎 )

• Frequentist perspective: we assume that the true 
parameter value θ is fixed but unknown

• Function estimation is really just the same as estimating 
a parameter θ; the function estimator is simply a point 
estimator in function space.
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Statistical bias

𝑏𝑖𝑎𝑠 Z𝜽> = 𝔼 Z𝜽> − 𝜽
• An estimator Z𝜽> is said to be unbiased if 
𝑏𝑖𝑎𝑠 Z𝜽> = 0

q which implies that 𝔼 Z𝜽> = 𝜽. 
• An estimator Z𝜽> is said to be asymptotically 

unbiased if lim
#→@

𝑏𝑖𝑎𝑠 (𝔼 Z𝜽> ) = 0

Expectation over the 
data 𝒙 𝟏 , 𝒙 𝟐 , … , 𝒙 𝒎
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Example: Bernoulli 
distribution 

• Consider a set of samples {𝑥 ! , 𝑥 " , … , 𝑥 # } that are i.i.d according to a Bernoulli distribution with mean θ

q 𝑃 𝑥 𝑖 ; 𝜃 = 𝜃$ % 1 − 𝜃 !&$ %

q A common estimator of 𝜃 is: 

-𝜃# =
1
𝑚/

%'!

#

𝑥(%)
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Example: Gaussian 
distribution - mean

• Consider a set of samples {𝑥 * , 𝑥 = , … , 𝑥 # } that 
are i.i.d according to a a Gaussian distribution: 
q 𝑝 𝑥 " = 𝒩 𝑥 " , 𝜇, 𝜎=

• 𝜇̂# = *
#
∑"9*# 𝑥(")

The sample mean is an unbiased 
estimator of Gaussian mean 
parameter.
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Example: Gaussian 
distribution - variance

• Biased estimator: #𝜎7* =
8
7
∑)987 𝑥 ) − #𝜇7

*

• Unbiased estimator: 

• #𝜎7* =
8

7:8
∑)987 𝑥 ) − #𝜇7

*

The sample variance is a biased 
estimator.
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Variance
• how much we expect an estimator to vary as a 

function of the data sample?
• 𝑣𝑎𝑟 g𝜃 =?
• Standard error 𝑆𝐸 g𝜃 =?
• Just as we might like an estimator to exhibit low 

bias we would also like it to have relatively low 
variance.
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Example: Bernoulli 
distribution

• The variance of the estimator decreases as a function of 
m, the number of examples in the dataset. 
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Trading off Bias and Variance

Figure 5.6
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Bias vs. variance 
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Bias vs. variance
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Maximum Likelihood 
Estimation 

• Rather than guessing that some function might 
make a good estimator and then analyzing its bias 
and variance, we would like to have some principle 
from which we can derive specific functions that are 
good estimators for different models.

Same as: 
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Maximum Likelihood 
Estimation 

• Divide by m:  
• MLE minimizes the dissimilarity 

between the empirical distribution 
O𝑝%202 and the model distribution

Empirical 
distribution

Independent of 𝜃Any loss consisting of a negative log-
likelihood is a cross-entropy between
the empirical distribution defined by the
training set and the probability
distribution defined by model.
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Conditional log-likelihood
• Supervised learning

• Instead of producing a single prediction O𝑦, we now 
think of the model as producing a conditional 
distribution 𝑝(𝑦 | 𝒙).

• For linear regression, take: fixed

Output of linear 
regression as 
the mean
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Conditional log-likelihood for 
linear regression

• To maximize:

• Same as minimizing:
From the 
dataset

Output of linear 
regression as 
the mean
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Properties of maximum 
likelihood 

• The best estimator asymptotically, as the number of 
examples 𝑚 → ∞, in terms of its rate of 
convergence as 𝑚 increases.

• Consistency: plim
#→@

g𝜃#= 𝜃

q Under appropriate conditions 
o The true distribution must lie within the model 

family
o The true distribution must correspond to exactly 

one value of θ
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Bayesian statistics
• the true parameter 𝜃 is unknown or uncertain and 

thus is represented as a random variable.

• It is different than the single point estimate 
(frequentist statistics) 
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Maximum A Posteriori (MAP) 
Estimation

• Add the prior: 

• MAP Bayesian inference has the advantage of 
leveraging information that is brought by the prior 
and cannot be found in the training data.
q If this prior is given by 𝒩 𝒘,𝟎, *

C
𝑰= , then the log-

prior term is proportional to the familiar 𝜆𝑤7𝑤
weight decay penalty
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Supervised learning 
examples

• Logistic regression 
• Support vector machines 
• Decision trees 
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Logistic regression

• There is no closed-form solution for the optimal weights.
• Instead, we must search for them by maximizing the log-

likelihood. 
• We can do this by minimizing the negative log-likelihood 

(NLL) using gradient descent.



(Goodfellow 2016)

Support vector machines
• Introduced by Vapnik in the 90s
• Widest street approach 
• Decision rule 

q Which side of the street? 
o 𝒘𝒙 + 𝑏 ≥ 0 ⇒ +

o 𝒘𝒙 + 𝑏 ≤ 0 ⇒ −

q w is perpendicular to the median line of the street, but which w?
o We add the following scaling constraints:

• 𝒘𝒙0 + 𝑏 ≥ 1
o 𝒘𝒙1 + 𝑏 ≤ −1
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SVM
• y" = +1 for + samples 
• y" = −1 for – samples
• 𝑦"(𝒘𝒙𝒊 + 𝑏) ≥ 1 same equation for x+ and x-
• 𝑦" 𝒘𝒙𝒊 + 𝑏 − 1 ≥ 0
• Constraints: 𝑦" 𝒘𝒙𝒊 + 𝑏 − 1 = 0 for 𝒙𝒊 in the gutter

• w𝑖𝑑𝑡ℎ = 𝒙D − 𝒙(
𝐰
𝒘
= *(F

𝒘
− ((*DF)

𝒘
= =

𝒘

• Maximize the width of the street:

q max =
𝒘
⇒ max *

𝒘
⇒ min 𝒘 '

=
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Lagrange multipliers
• 𝐿 = 8

*
𝒘 * − ∑𝛼) 𝑦) 𝒘𝒙𝒊 + 𝑏 − 1 𝛼) ≥ 0

• 𝛻𝒘𝐿 = 𝒘 − ∑𝛼)𝑦)𝒙𝒊
q 𝒘− ∑𝛼)𝑦)𝒙𝒊 = 𝟎 ⇒ 𝒘 = ∑𝛼)𝑦)𝒙𝒊

•
<=
<>
= ∑𝛼)𝑦) ⇒ ∑𝛼)𝑦) = 0

• Replacing in 𝐿 : 
q 𝐿 = 8

*
∑𝛼)𝑦)𝒙𝒊∑𝛼?𝑦?𝒙𝒋 − ∑𝛼)𝑦)𝒙𝒊∑𝛼?𝑦?𝒙𝒋 − ∑𝛼)𝑦)𝑏 +

∑𝛼)
q 𝐿 = ∑𝛼) −

8
*
∑𝛼)𝛼?𝑦)𝑦?𝒙𝒊𝒙𝒋

• Numerical analysts will solve this problem (max with 
respect to 𝛼) ≥ 0) and give us the 𝛼)
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Kernel trick
• 𝛼" ≠ 0 only	for	points	in	the	gutter,	also	known	as	
support	vectors

• Decision for 𝒙𝒋: 𝒘𝒙𝒋 + 𝑏 = ∑𝛼"𝑦"𝒙𝒊𝒙𝒋 + 𝑏
• We can change the representation of 𝒙𝒊 to be 𝜙 𝒙𝒊
• We do not need direct access to 𝜙 𝒙𝒊

q Instead we define 𝑘 𝒙𝒊, 𝒙𝒋 = 𝜙 𝒙𝒊 𝜙 𝒙𝒋
q The function k is called kernel

• 𝑓 𝒙 = ∑𝛼"𝑦"𝑘 𝒙𝒊, 𝒙 + 𝑏
q This function is nonlinear with respect to 𝒙
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Advantages of the kernel 
trick

• The kernel trick is powerful for two reasons. 
q it allows us to learn models that are nonlinear as a 

function of 𝒙 using convex optimization techniques 
that are guaranteed to converge efficiently

q the kernel function often admits an implementation 
that is significantly more computational efficient than 
naively constructing two 𝜙 𝒙 vectors and explicitly 
taking their dot product.
o In some cases, 𝜙 𝒙 can even be infinite 

dimensional
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Gaussian kernel
• Gaussian kernel

q Aka RBF: Radial Basis Function 

• We can think of the Gaussian kernel as performing a kind of 
template matching.
q A training example x associated with training label y 

becomes a template for class y. 
q When a test point x’ is near x according to Euclidean 

distance, the Gaussian kernel has a large response, 
indicating that x’ is very similar to the x template. 

q The model then puts a large weight on the associated 
training label y.

• Overall, the prediction will combine many such training 
labels weighted by the similarity of the corresponding 
training examples.
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SVM limitations
• high computational cost of training when the dataset 

is large.

• The current deep learning renaissance began when 
Hinton et al. (2006) demonstrated that a neural 
network could outperform the RBF kernel SVM on 
the MNIST benchmark.
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Watch (SVM)
• https://www.youtube.com/watch?v=_PwhiWxHK8o

https://www.youtube.com/watch%3Fv=_PwhiWxHK8o
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K-Nearest Neighbors
• There is not even really a training stage or learning 

process.
q We find the k-nearest neighbors to x in the 

training data X. We then return the average of the 
corresponding y values in the training set

• In the case of classification, we can average over 
one-hot code vectors
q We can then interpret the average over these 

one-hot codes as giving a probability distribution 
over classes
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K-NN limitations
• It cannot learn that one feature is more 

discriminative than another. 
q For example, imagine we have a regression task 

with 𝑥 ∈ ℝ*,, drawn from an isotropic Gaussian 
distribution, 

q but only a single variable is relevant to the output 
𝑦 = 𝑥*

q Nearest neighbor regression will not be able to 
detect this simple pattern.
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Decision Trees

Figure 5.7

How a decision tree
might divide ℝ=.

Each leaf requires at least one training 
example to define, 
so it is not possible for the decision tree to 
learn a function that has more local maxima 
than the number of training examples.
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Decision trees limitations

• It struggles to solve some problems that are easy 
even for logistic regression.

• If we have a two-class problem and the positive 
class occurs wherever 𝑥= > 𝑥*
q the decision boundary is not axis-aligned. The 

decision tree will thus need to approximate the 
decision boundary with many splits, implementing 
a step function that constantly walks back and 
forth across the true decision function.
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Unsupervided learning
• Density estimation 
• Learning to draw samples from a distribution
• Learning to denoise data from some distribution 
• Clustering the data into groups of related examples  
• Simpler representation: 

q Lower-dimensional representation 
q Sparse representation 
q Independent representation 
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Principal Components 
Analysis

• lower dimensionality
• no linear correlation
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No linear correlation
• Let us consider the 𝑚×𝑛-dimensional design matrix 𝑿. 
• We will assume that the data has a mean of zero, 
𝔼 𝒙 = 0. 
q If this is not the case, the data can easily be centered 

by subtracting the mean from all examples in a 
preprocessing step.

• The unbiased sample covariance matrix associated with 
X is given by: 

q 𝑉𝑎𝑟 𝒙 = 8
7:8

𝑿𝑻𝑿

• PCA finds 𝒛 = 𝑾𝑻𝒙 where 𝑉𝑎𝑟 𝒛 is diagonal. 
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Decorrelation
• PCA finds 𝒛 = 𝑾𝑻𝒙 where 𝑉𝑎𝑟 𝒛 is diagonal. 

q Remember that 𝑿𝑻𝑿 = 𝑾𝚲𝑾𝑻

• 𝑉𝑎𝑟 𝒛 = *
#(*

𝒁𝑻𝒁 = 𝟏
𝒎(𝟏

𝑾𝑻𝑿𝑻𝑿𝑾 = *
#(*

𝑾𝑻𝑾𝜦𝑾𝑻𝑾 =

• 𝑉𝑎𝑟 𝒛 = *
#(*

𝚲 since 𝑾𝑻𝑾 = 𝑰

• PCA disentangles the unknown factors of variation 
underlying the data.
q this disentangling takes the form of finding a rotation of 

the input space that aligns the principal axes of variance 
with the basis of the new representation space 
associated with z.
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k-means clustering 
• Divides the training set into k different clusters of 

examples
• Provides a k-dimensional one-hot code vector ℎ

representing an input 𝑥. 
q If 𝑥 belongs to cluster 𝑖, then ℎ" = 1 and all other 

entries of the representation ℎ are zero.
q This is an example of a sparse representation 
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k-means algorithm
• initialize k different centroids {𝜇(1), . . . , 𝜇(𝑘)} to 

different values,
• then alternate between two different steps until 

convergence:
q In one step, each training example is assigned to 

cluster 𝑖, where 𝑖 is the index of the nearest 
centroid 𝜇(𝑖). 

q In the other step, each centroid 𝜇(𝑖) is updated to 
the mean of all training examples 𝑥(𝑗) assigned to 
cluster 𝑖.
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How to evaluate clustering?
• Suppose we have images of 

q Red trucks, gray trucks
q Red cars, gray cars 

• One clustering algorithm may find a cluster of cars and a 
cluster of trucks 

• Another learning algorithm may find a cluster of red 
vehicules and a cluster of gray vehicules 

• A third algorithm may find 4 clusters … 
q Red cars similarity to gray trucks is same as their 

similarity to gray cars! 
• A distributed representation may have two attributes 

for each vehicule



(Goodfellow 2016)

Building a machine learning 
algorithm

• Simple recipe
q A dataset 
q A cost function (e.g. MSE, negative log-likelihood) 
q A model (e.g. linear, non-linear) 
q An optimization procedure (closed form, gradient 

descent, stochastic gradient descent …) 
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Exercise 
• Link equations and definitions 
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Stochastic gradient descent 

Computing the gradient is O(m)
Sample a mini-batch 
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Challenges motivating deep 
learning

• Simple machine learning algorithms work very well 
on a wide variety of important problems. 

• However, they have not succeeded in solving the 
central problems in AI, such as recognizing speech 
or recognizing objects.

• Generalizing to new examples becomes 
exponentially more difficult when working with high-
dimensional data, 

• Such data also often impose high computational 
costs. 
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Curse of Dimensionality
Many machine learning 
problems become exceedingly 
difficult when the number of 
dimensions in the data is high.

one variable, 10
regions of interest.

two variables, 10
regions of interest 

each.

three variables, 10
regions of interest 

each.

For 𝑑 dimensions and 𝑣 values to be distinguished along each
axis, we seem to need 𝑂(𝑣! ) regions and examples
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Smoothness prior (aka local 
consistency)

• the function we learn should not 
change very much within a 
small region.
q KNN
q RBF kernel 
q Decision trees 

• to distinguish 𝑂(𝑘) regions in 
input space, all of these 
methods require 𝑂(𝑘) examples Voronoi

diagram
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Smoothness prior is not 
enough!

• Is there a way to represent a complex function that 
has many more regions to be distinguished than the 
number of training examples?
q A checkerboard contains many variations but 

there is a simple structure to them.
• The answer is Yes: 

q If we introduce some dependencies between the 
regions 

q via additional assumptions about the underlying 
data generating distribution
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Deep learning solution 
• Deep learning assumes that the data was 

generated by the composition of factors or features, 
potentially at multiple levels in a hierarchy

• These apparently mild assumptions allow an 
exponential gain in the relationship between the 
number of examples and the number of regions that 
can be distinguished.

• Deep and distributed representations counter the 
curse of dimensionality.
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Manifold
• A manifold is a connected set of points 

q that can be approximated well by considering only a 
small number of degrees of freedom, or dimensions, 
embedded in a higher-dimensional space.

• A manifold is a set of points, associated with a 
neighborhood around each point. 
q Transformations can be applied to move on the 

manifold from one position to a neighboring one.
• From any given point, the manifold locally appears to be 

an Euclidean space. 
q In everyday life, we experience the surface of the 

world as a 2-D plane, but it is in fact a spherical 
manifold in 3-D space.
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Manifold

One-dimensional manifold embedded in two dimensional
space.



(Goodfellow 2016)

Manifold
• we allow the dimensionality of the manifold to vary 

from one point to another. 
q This often happens when a manifold intersects 

itself. 
q For example, a figure eight is a manifold that has 

a single dimension in most places but two 
dimensions at the intersection at the center.
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Manifold learning
• Manifold learning algorithms assumes that most of 
ℝ! consists of invalid inputs, 
q interesting inputs occur only along a collection of 

manifolds 
q Interesting variations in the output of the learned 

function occurring only along directions that lie on 
the manifold, 

q or with interesting variations happening only when 
we move from one manifold to another.

the key assumption remains 
that probability mass is

highly concentrated.
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Arguments supporting the 
manifold hypothesis

• the probability distribution over images, text strings, 
and sounds that occur in real life is highly 
concentrated.

Uniformly 
Sampled 
Images
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Arguments supporting the 
manifold hypothesis

• Examples we encounter are connected to each 
other by applying transformations to traverse the 
manifold.

QMUL Dataset
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Conclusion 
• The manifold assumption is at least approximately 

correct.

• This concludes part I of the course 
• You are now prepared to embark upon your study 

of deep learning.

Congratulations


