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Multilayer perceptrons (MLP)
• Approximate some function
• A feedforward network defines a mapping  

• No feedback connections 
• Functions are composed in a chain

q 𝑓 ! is the first layer, 𝑓 " is the second layer, and 
so on … 

• The training examples specify what the output layer 
must do
q The other layers are called hidden layers 
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What’s the idea?
• The strategy of deep learning is to learn a new 

represenation of the data 𝜙(𝒙, 𝜽). Think of this as 
the output of a hidden layer.

• Parameters 𝑤 maps the output of hidden layers to 
the desired output: 𝜙 𝒙, 𝜽 #𝒘

• We give up on the convexity of the training problem 
• 𝜙 𝒙, 𝜽 can be very generic, in the same time its 

design can be guided by human experts
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Roadmap
• Example: Learning XOR
• Gradient-Based Learning
• Hidden Units
• Architecture Design
• Back-Propagation
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XOR is not linearly separable
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Linear model? 
• Cost function: 

• Linear model

• Normal equations ? 
q W = [0,0], b=0.5 
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Network Diagrams

Figure 6.2
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Network Diagrams

Figure 6.2



(Goodfellow 2016)

Rectified Linear Activation

Figure 6.3



(Goodfellow 2016)

Solving XOR
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Solving XOR

Figure 6.1



(Goodfellow 2016)

Roadmap
• Example: Learning XOR
• Gradient-Based Learning
• Hidden Units
• Architecture Design
• Back-Propagation



(Goodfellow 2016)

Gradient-Based Learning
• Specify

q Model
q Cost

• Design model and cost so cost is smooth
• Minimize cost using gradient descent or related 

techniques
q Rather than linear equations solvers used in 

linear regression 
q Or convex optimization algorithms used in SVM 

and logistic regression 
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Conditional Distributions and 
Cross-Entropy
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Stochastic gradient descent 

Computing the gradient is O(m)
Sample a mini-batch 
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Stochastic gradient descent
• No convergence guarantees 
• Sensitive to the values of the initial parameters 
• recipe

q Intialize all weights to small random numbers 
q Biases must be initialized to zero or small positive 

values 
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Linear output units
• Suppose the network provides a set of hidden 

features 𝒉 = 𝑓(𝒙, 𝜽)
• Predict a vector of continuous variables 𝒚
• Linear output unit:  -𝒚 = 𝑾𝑻𝒉 + 𝒃
• It corresponds to produce the mean of a conditional 

Gaussian distribution: 
q 𝑝 𝒚 𝒙 = 𝒩(𝒚; -𝒚; 𝑰)
q Minimizing cross entropy is equivalent to 

minimizing the mean squared error 
• Linear units do not saturate 
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Sigmoid output units
• Predict a binary variable 𝑦 (binary classification 

problem)
• 6𝑦 = 𝑃 𝑦 = 1 𝒙) based on: 𝒉 = 𝑓(𝒙, 𝜽)
• Bad idea: 
• Sigmoid output unit 

q 𝑧 = 𝒘𝑻𝒉 + 𝑏 is called logit
q 6𝑦 = 𝜎(𝑧)

• The log in the cost function undoes the exp of the 
sigmoid
q No gradient saturation
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Saturation 
• 𝐽 𝜃 = − log 𝜎(𝑧) if 𝑦 = 1
• 𝐽 𝜃 = − log 1 − 𝜎 𝑧 = −log(𝜎 −𝑧 ) if 𝑦 = 0
• One equation: 𝐽 𝜃 = − log 𝜎 2𝑦 − 1 𝑧

= 𝜁 1 − 2𝑦 𝑧
• Saturates only when 1 − 2𝑦 𝑧 is very negative

q When we have converged to the solution 
• In the limit of extremely incorrect z , the softplus

function does not shrink the gradient at all
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Softmax output units
• A generalization of the sigmoid to represent a distribution over 
𝑛 values 
q muli-label classification
q In fact it is soft arg-max, winner-take-all 

o one of the outputs is nearly one and the others are nearly 0.

• "𝑦! = 𝑃 𝑦 = 𝑖 𝑥 = softmax 𝒛 ! =
"#$(&!)

∑" "#$(&")

• 𝒛 = 𝑾𝑻𝒉 + 𝒃 (we can think that z are unnormalized log 
probabilities given by the network)

• Cost function: −log softmax 𝒛 ! = −𝑧! + log∑* exp(𝑧*)
• We can impose a requirement that one element of z be fixed.

q But it is simpler to implement the overparametrized version.

this term cannot 
saturate, learning 
can proceed
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Saturation 
• If 𝑧! is extremely positive => saturates to 1 
• If 𝑧! is extremely negative => saturates to 0

q An output softmax 𝒛 ! saturates to 1 when the corresponding 
input is maximal (𝑧! = max

!
𝑧!) and 𝑧! is much greater than all 

the other inputs. 
q The output softmax 𝒛 ! can also saturate to 0 when 𝑧! is not 

maximal and the maximum is much greater.

• MSE loss function will perform poorly because of these gradient 
vanishing problems
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Output Types

Output Type Output 
Distribution Output Layer Cost Function

Binary Bernoulli Sigmoid Binary cross-
entropy

Discrete Multinoulli Softmax Discrete cross-
entropy

Continuous Linear (MSE)
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Don’t mix and match
Sigmoid output with target of 1
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Other output units

• Design	a	neural	network	to	estimate	the	variance	of	a	
gaussian	distribution	representing	𝑃 𝑦 𝑥)

• Loss function: 

q − log𝒩 𝑥; 𝜇; 𝛽!" ∝ − "
#
log 𝛽 + "

#
𝛽 𝑥 − 𝜇 #

• Check notebook 
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Roadmap
• Example: Learning XOR
• Gradient-Based Learning
• Hidden Units
• Architecture Design
• Back-Propagation
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Hidden units
• Most hidden units can be described as:

q accepting a vector of inputs 𝒙, 
q computing an affine transformation 𝒛 = 𝑾𝑻𝒙 + 𝒃, 
q And applying an element-wise nonlinear function 𝑔(𝒛).

• Use ReLUs, 90% of the time
• For some research projects, get creative
• Many hidden units perform comparably to ReLUs. New 

hidden units that perform comparably are rarely 
interesting.
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ReLu is not differentiable at 0!
• The functions used in the context of neural networks 

usually have defined left derivatives and defined right 
derivatives. 
q In the case of 𝑔(𝑧) = max{0, 𝑧}, 

o the left derivative at 𝑧 = 0 is 0
o and the right derivative is 1. 

q Software implementations of neural network training 
usually return one of the one-sided derivatives
o rather than reporting that the derivative is undefined 

or raising an error.
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When ReLu is active
• When the input is positive, we say that the rectifier is 

active:
q the gradient is 1 
q The second derivative is 0, no second-order effects.

• When initializing the parameters of 𝑾𝑻𝒙 + 𝒃,
q set all elements of 𝒃 to a small, positive value, such as 

0.1
q This makes it very likely that the rectified linear units 

will be initially active for most inputs in the training set 
and allow the derivatives to pass through.
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ReLu generalizations

q Absolute value rectification: 𝛼% = −1
q Leaky ReLu: 𝛼% = 0.01
q Parametric ReLu: 𝛼% is learnable 

• Rectified linear units and its generalizations are 
based on the principle that models are easier to 
optimize if their behavior is closer to linear.
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Other hidden units
• Sigmoid 

q 𝑔(𝑧) = 𝜎(𝑧)
q They can saturate 

o which makes learning difficult
• Hyperbolic tangent 

q 𝑔(𝑧) = tanh(𝑧).
q Related to sigmoid: tanh(𝑧) = 2𝜎(2𝑧) − 1.
q It typically performs better 

o since it resembles the identity function 
o So long as the activations of the network can be 

kept small.
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Other hidden units 
• The authors tested a feedforward network using 
𝒉 = cos(𝑾𝑻 𝒙 + 𝒃) on the MNIST dataset and 
obtained an error rate of less than 1%

• Linear hidden units offer an effective way of 
reducing the number of parameters in a network
q Assume 𝑾𝑻 is p x n
q 𝑾𝑻 = 𝐕𝐓𝐔𝐓 where 𝐕𝐓 is pxq and 𝐔𝐓 is qxn
q In total we have qx(n+p) trainable params 

o Much less than << pxn for small q
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Roadmap
• Example: Learning XOR
• Gradient-Based Learning
• Hidden Units
• Architecture Design
• Back-Propagation
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Architecture Basics

Width

D
ep

th

• ℎ ! = 𝑔 ! (𝑊 ! #𝑥 + 𝑏 ! )
• ℎ " = 𝑔 " (𝑊 " #ℎ ! + 𝑏 " )
• …
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Universal Approximator
Theorem

• One hidden layer is enough to represent (not learn) 
an approximation of any function to an arbitrary 
degree of accuracy

• So why deeper?
q Shallow nets may need (exponentially) more 

width
q Shallow nets may overfit more
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Bad idea: One hidden layer
• Consider binary functions over 𝑣 ∈ 0,1 '

q The image of any member of the possible 
2' inputs can be 0 or 1 
o In total, we have 2"! possible functions

q Selecting one such function requires 𝑂(2')
degrees of freedom

• Working with a single layer is sufficient to represent 
‘any’ function 
q Yet the width of the layer can be exponential, and 

prone to overfitting 
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Montufar et. al. (2014)

Example: Absolute value rectification
q Has the same output for every pair 

of mirror points
q The mirror axis of symmetry is given 

by 𝑊ℎ + 𝑏
q A function computed on top of that 

unit is simpler
q If we fold again, we get an even 

simpler function, and so on .. 

• A deep rectifier network can represent functions 
with a number of regions that is exponential in 
the depth of the network. 
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Exponential Representation 
Advantage of Depth

We obtain an exponentially large number of piecewise
linear regions which can capture all kinds of repeating 

patterns.
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Why deep?
• Choosing a deep model encodes a very general 

belief (or prior) that the function we want to learn 
should involve composition of several simpler 
functions

• Alternately, we can interpret the use of a deep 
architecture as expressing a belief that the function 
we want to learn is a computer program consisting 
of multiple steps, where each step makes use of the 
previous step’s output

• Empirically, greater depth does seem to result in 
better generalization for a wide variety of tasks
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Better Generalization with 
Greater Depth

Task: transcribe multi-digit numbers from photographs of addresses

Layers
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Large, Shallow Models Overfit 
More

Figure 6.7
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Other architectural 
considerations

• Other architectures: CNN, RNN
• Skip connections: going from layer i to layer i + 2 or 

higher. 
q make it easier for the gradient to flow from output 

layers to layers nearer the input.

Design some neural networks for fun: 
https://playground.tensorflow.org/

https://playground.tensorflow.org/
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Roadmap
• Example: Learning XOR
• Gradient-Based Learning
• Hidden Units
• Architecture Design
• Back-Propagation
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Compute the gradient
• Forward propagation: 𝑥 → X𝑦 → J 𝜃

• Backprop: %&(()
%(

=?
q Computing derivatives by propagating information 

backward through the network
q Simple and inexpensive 
q Based on the chain rule: 

o 𝐳 = 𝑾𝒙 + 𝒄
o 𝒉 = 𝑔 𝒛
o X𝑦 = 𝒘𝑻𝒉 + 𝑏
o 𝐽 X𝑦 = 𝑦 − X𝑦 #

𝜃 = 𝑾, 𝒄,𝒘, 𝑏
𝛻(𝐽 =?

𝜕𝐽
𝜕𝑐!

=
𝜕𝐽
𝜕 6𝑦

𝜕 6𝑦
𝜕ℎ!

𝜕ℎ!
𝜕𝑧!

𝜕𝑧!
𝜕𝑐!

𝜕𝐽
𝜕𝑊!!

=
𝜕𝐽
𝜕 6𝑦

𝜕 6𝑦
𝜕ℎ!

𝜕ℎ!
𝜕𝑧!

𝜕𝑧!
𝜕𝑊!!
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Chain Rule
• More generally 

q 𝒙 ∈ ℝ!, 𝒚 ∈ ℝ", 𝑧 ∈ ℝ

q 𝑧 = 𝑓 𝒚 = 𝑓 𝑔 𝒙
𝜕𝑧
𝜕𝑥#

=,
$

𝜕𝑧
𝜕𝑦$

𝜕𝑦$
𝜕𝑥#

q Vector notation:

o 𝛻𝒙𝑧 =
&𝒚
&𝒙

(
𝛻𝒚𝑧

o Or: 𝛻𝒙𝑧 = ∑$
&)
&*!

𝛻𝒙𝑦$
• Backprop consists of performing Jacobian-gradient product 

for each operation in the graph.

𝑛×𝑚
Jacobian 

matrix 
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Back-Propagation
• Back-propagation is “just the chain rule” of calculus

• But it’s a particular implementation of the chain rule

q Uses dynamic programming (table filling)

q Avoids recomputing repeated subexpressions

q Speed vs memory tradeoff
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Simple Back-Prop Example

Fo
rw

ar
d 

pr
op Back-prop

C
om

pu
te

 a
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at
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ns

C
om

pute derivatives
Compute loss
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General implementation 
Computation Graphs

Figure 6.8

Multiplication

ReLU layer

Logistic regression

Linear regression
and weight decay

Mini-batch

6𝑦 = 𝑥#𝑤
𝑢) = 𝜆∑w%

"
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Repeated Subexpressions

Figure 6.9
Back-prop avoids computing this twice
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Symbol-to-Symbol 
Differentiation

Figure 6.10
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Implementing the chain rule 
• Given a computation graph, we wish to compute 

*+ !

*+ " , for 𝑖 = 1,… , 𝑛%
q 𝑢 ' can be the cost function 
q 𝑢 % are the trainable parameters of the network 
q 𝑢 % is associated with an operation 𝑓

o 𝑢 % = 𝑓 𝔸% where 𝔸% is the set of parents of 𝑢 %

𝜕𝑢 '

𝜕𝑢 % = a
,:%∈/0(+ # )

𝜕𝑢 '

𝜕𝑢 ,
𝜕𝑢 ,

𝜕𝑢 %
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Forward propagation
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Backward propagation

𝛿𝑢'

𝛿𝑢' = 1



(Goodfellow 2016)

Efficiency 
• The amount of computation required for performing the 

back-propagation scales linearly with the number of 
edges in G, 
q the computation for each edge corresponds to 

computing a partial derivative (of one node with 
respect to one of its parents)

q as well as performing one multiplication and one 
addition. 

• Naïve approach:
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Two implementaion approaches 
• Take a computational graph and a set of numerical 

values for the inputs to the graph, then return a set of 
numerical values describing the gradient at those input 
values. We call this approach “symbol-to-number” 
differentiation. This is the approach used by PyTorch.

• Another approach is to take a computational graph and 
add additional nodes to the graph that provide a 
symbolic description of the desired derivatives. This is 
the approach taken TensorFlow. 
q Because the derivatives are just another 

computational graph, it is possible to run back-
propagation again, derivatives. 
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Forward propagation for a neural network
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Gradients of biases and 
weights

• We have 𝒂(𝒌) = 𝒃(𝒌) +𝑾(𝒌)𝒉(𝒌4𝟏)

q
*6

*7"
$ = *8

*0"
$ . 1 + 𝜆

*9

*7"
$

q Vectorized: 𝛻𝒃 𝒌 𝐽 = 𝛻𝒂 𝒌 𝐿 + 𝜆𝛻𝒃 𝒌 Ω

q
*6

*<",#
$ = *8

*0"
$ . ℎ,

=4! + 𝜆 *9

*<",#
$

q Vectorized: 𝛻𝑾 𝒌 𝐽 = (𝛻𝒂 𝒌 𝐿) ℎ =4! '+ 𝜆𝛻𝑾 𝒌 Ω

Outer Product
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Gradient of representations
• We have 𝒂(𝒌) = 𝒃(𝒌) +𝑾(𝒌)𝒉(𝒌4𝟏)

q 𝛻𝒉 𝒌(𝟏 𝐿 = *0 $

*@ $(*

#
𝛻𝒂 𝒌 𝐿 = 𝑾(𝒌)𝑻 𝛻𝒂 𝒌 𝐿

• 𝒉(𝒌) = 𝑓(𝒂(𝒌))
q 𝛻𝒂 𝒌 𝐿 = 𝛻𝒉 𝒌 𝐿 ⊙ 𝑓A 𝒂 𝒌
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Backward propagation for a neural network
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Gradients for matrix 
multiplication

• 𝐻𝑊 = 𝑈
q 𝛻𝑯𝑓 = 𝛻𝑼𝑓 𝑊#

q 𝛻𝑾𝑓 = 𝐻#𝛻𝑼𝑓
• Useful to backprop over a batch of samples 
• A layer receives 𝐺:

q 𝐺𝑊# is the update for 𝑊
q 𝐻#𝐺 is back propagated 
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Backprop for a batch of samples

Cost forward propagation: 𝑂(𝑤)multiply-adds
Cost backward propagation: 𝑂(𝑤)multiply-adds
Memory-cost: 𝑂(𝑚𝑛!)

𝐽 = 𝐽'() + 𝜆(∑𝑊*+
, -

+ ∑𝑊*+
- -
)

𝐺 = 𝛻+($)𝐽,-.

𝛻/𝐽,-. = 𝐺𝑊0

𝐻𝑊(1) = 𝑈(1)

𝛻2($)𝐽 = 𝐻0𝐺 + 2𝜆𝑊(1)

𝑋𝑊(3) = 𝑈(3)

𝛻+ & 𝐽,-. = 𝐺′

𝛻2(&)𝐽 = 𝑋0𝐺′ + 2𝜆𝑊(3)
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Backprop in deep learning vs. the general 
field of automatic differentiation

• Reverse mode accumulation
• Forward mode accumulation 
• Simplifying algebraic expressions (e.g. Theano)

q 𝑞! =
"#$ %"

∑# "#$ %#

q 𝐽 = −∑𝑝' log 𝑞'

q
()
(%"

= 𝑞! − 𝑝!

• Specialized libraries vs. automatic generation
q Data structures with bprop() method 

• Backprop is not the only way or the optimal way of 
computing the gradient, but it is practical 
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High-order derivatives
• Properties of the Hessian may guide the learning 
• 𝐽 𝜃 is a function ℝ0 → ℝ

q The hession of 𝐽 𝜃 is in ℝ0×0
• In typical deep learning, 𝑛 can be in the billions 

q Computing the Hessian is not practical 
• Krylov methods are a set of iterative techniques for 

performing various operations like:
q approximately inverting a matrix 
q or finding eigenvectors or eigenvalues, 
q without using any operation other than matrix-vector

products.
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Hessian-vector Products

• Compute 𝑯𝒆(𝒊) for all 𝑖 = 1,… , 𝑛
• Where 𝒆(𝒊) is the one hot vector: 

q 𝑒E
% = 1

q 𝑒F
% = 0
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Questions
• Watch Ian’s lecture: 

q https://drive.google.com/file/d/0B64011x02sIkREx
CY0FDVXFCOHM/view

https://drive.google.com/file/d/0B64011x02sIkRExCY0FDVXFCOHM/view

