
Deep Feedforward
Networks

Lecture slides for Chapter 6 of Deep Learning
www.deeplearningbook.org

Ian Goodfellow
Last updated 2016-10-04

Adapted by m.n. for CMPS 392

(Goodfellow 2016)

Multilayer perceptrons (MLP)
• Approximate some function
• A feedforward network defines a mapping

• No feedback connections
• Functions are composed in a chain

q 𝑓 ! is the first layer, 𝑓 " is the second layer, and
so on …

• The training examples specify what the output layer
must do
q The other layers are called hidden layers

(Goodfellow 2016)

What’s the idea?
• The strategy of deep learning is to learn a new

represenation of the data 𝜙(𝒙, 𝜽). Think of this as
the output of a hidden layer.

• Parameters 𝑤 maps the output of hidden layers to
the desired output: 𝜙 𝒙, 𝜽 #𝒘

• We give up on the convexity of the training problem
• 𝜙 𝒙, 𝜽 can be very generic, in the same time its

design can be guided by human experts

(Goodfellow 2016)

Roadmap
• Example: Learning XOR
• Gradient-Based Learning
• Hidden Units
• Architecture Design
• Back-Propagation

(Goodfellow 2016)

XOR is not linearly separable

(Goodfellow 2016)

Linear model?
• Cost function:

• Linear model

• Normal equations ?
q W = [0,0], b=0.5

(Goodfellow 2016)

Network Diagrams

Figure 6.2

(Goodfellow 2016)

Network Diagrams

Figure 6.2

(Goodfellow 2016)

Rectified Linear Activation

Figure 6.3

(Goodfellow 2016)

Solving XOR

(Goodfellow 2016)

Solving XOR

Figure 6.1

(Goodfellow 2016)

Roadmap
• Example: Learning XOR
• Gradient-Based Learning
• Hidden Units
• Architecture Design
• Back-Propagation

(Goodfellow 2016)

Gradient-Based Learning
• Specify

q Model
q Cost

• Design model and cost so cost is smooth
• Minimize cost using gradient descent or related

techniques
q Rather than linear equations solvers used in

linear regression
q Or convex optimization algorithms used in SVM

and logistic regression

(Goodfellow 2016)

Conditional Distributions and
Cross-Entropy

(Goodfellow 2016)

Stochastic gradient descent

Computing the gradient is O(m)
Sample a mini-batch

(Goodfellow 2016)

Stochastic gradient descent
• No convergence guarantees
• Sensitive to the values of the initial parameters
• recipe

q Intialize all weights to small random numbers
q Biases must be initialized to zero or small positive

values

(Goodfellow 2016)

Linear output units
• Suppose the network provides a set of hidden

features 𝒉 = 𝑓(𝒙, 𝜽)
• Predict a vector of continuous variables 𝒚
• Linear output unit: -𝒚 = 𝑾𝑻𝒉 + 𝒃
• It corresponds to produce the mean of a conditional

Gaussian distribution:
q 𝑝 𝒚 𝒙 = 𝒩(𝒚; -𝒚; 𝑰)
q Minimizing cross entropy is equivalent to

minimizing the mean squared error
• Linear units do not saturate

(Goodfellow 2016)

Sigmoid output units
• Predict a binary variable 𝑦 (binary classification

problem)
• 6𝑦 = 𝑃 𝑦 = 1 𝒙) based on: 𝒉 = 𝑓(𝒙, 𝜽)
• Bad idea:
• Sigmoid output unit

q 𝑧 = 𝒘𝑻𝒉 + 𝑏 is called logit
q 6𝑦 = 𝜎(𝑧)

• The log in the cost function undoes the exp of the
sigmoid
q No gradient saturation

(Goodfellow 2016)

Saturation
• 𝐽 𝜃 = − log 𝜎(𝑧) if 𝑦 = 1
• 𝐽 𝜃 = − log 1 − 𝜎 𝑧 = −log(𝜎 −𝑧) if 𝑦 = 0
• One equation: 𝐽 𝜃 = − log 𝜎 2𝑦 − 1 𝑧

= 𝜁 1 − 2𝑦 𝑧
• Saturates only when 1 − 2𝑦 𝑧 is very negative

q When we have converged to the solution
• In the limit of extremely incorrect z , the softplus

function does not shrink the gradient at all

(Goodfellow 2016)

Softmax output units
• A generalization of the sigmoid to represent a distribution over
𝑛 values
q muli-label classification
q In fact it is soft arg-max, winner-take-all

o one of the outputs is nearly one and the others are nearly 0.

• "𝑦! = 𝑃 𝑦 = 𝑖 𝑥 = softmax 𝒛 ! =
"#$(&!)

∑" "#$(&")

• 𝒛 = 𝑾𝑻𝒉 + 𝒃 (we can think that z are unnormalized log
probabilities given by the network)

• Cost function: −log softmax 𝒛 ! = −𝑧! + log∑* exp(𝑧*)
• We can impose a requirement that one element of z be fixed.

q But it is simpler to implement the overparametrized version.

this term cannot
saturate, learning
can proceed

(Goodfellow 2016)

Saturation
• If 𝑧! is extremely positive => saturates to 1
• If 𝑧! is extremely negative => saturates to 0

q An output softmax 𝒛 ! saturates to 1 when the corresponding
input is maximal (𝑧! = max

!
𝑧!) and 𝑧! is much greater than all

the other inputs.
q The output softmax 𝒛 ! can also saturate to 0 when 𝑧! is not

maximal and the maximum is much greater.

• MSE loss function will perform poorly because of these gradient
vanishing problems

(Goodfellow 2016)

Output Types

Output Type Output
Distribution Output Layer Cost Function

Binary Bernoulli Sigmoid Binary cross-
entropy

Discrete Multinoulli Softmax Discrete cross-
entropy

Continuous Linear (MSE)

(Goodfellow 2016)

Don’t mix and match
Sigmoid output with target of 1

(Goodfellow 2016)

Other output units

• Design	a	neural	network	to	estimate	the	variance	of	a	
gaussian	distribution	representing	𝑃 𝑦 𝑥)

• Loss function:

q − log𝒩 𝑥; 𝜇; 𝛽!" ∝ − "
#
log 𝛽 + "

#
𝛽 𝑥 − 𝜇 #

• Check notebook

(Goodfellow 2016)

Roadmap
• Example: Learning XOR
• Gradient-Based Learning
• Hidden Units
• Architecture Design
• Back-Propagation

(Goodfellow 2016)

Hidden units
• Most hidden units can be described as:

q accepting a vector of inputs 𝒙,
q computing an affine transformation 𝒛 = 𝑾𝑻𝒙 + 𝒃,
q And applying an element-wise nonlinear function 𝑔(𝒛).

• Use ReLUs, 90% of the time
• For some research projects, get creative
• Many hidden units perform comparably to ReLUs. New

hidden units that perform comparably are rarely
interesting.

(Goodfellow 2016)

ReLu is not differentiable at 0!
• The functions used in the context of neural networks

usually have defined left derivatives and defined right
derivatives.
q In the case of 𝑔(𝑧) = max{0, 𝑧},

o the left derivative at 𝑧 = 0 is 0
o and the right derivative is 1.

q Software implementations of neural network training
usually return one of the one-sided derivatives
o rather than reporting that the derivative is undefined

or raising an error.

(Goodfellow 2016)

When ReLu is active
• When the input is positive, we say that the rectifier is

active:
q the gradient is 1
q The second derivative is 0, no second-order effects.

• When initializing the parameters of 𝑾𝑻𝒙 + 𝒃,
q set all elements of 𝒃 to a small, positive value, such as

0.1
q This makes it very likely that the rectified linear units

will be initially active for most inputs in the training set
and allow the derivatives to pass through.

(Goodfellow 2016)

ReLu generalizations

q Absolute value rectification: 𝛼% = −1
q Leaky ReLu: 𝛼% = 0.01
q Parametric ReLu: 𝛼% is learnable

• Rectified linear units and its generalizations are
based on the principle that models are easier to
optimize if their behavior is closer to linear.

(Goodfellow 2016)

Other hidden units
• Sigmoid

q 𝑔(𝑧) = 𝜎(𝑧)
q They can saturate

o which makes learning difficult
• Hyperbolic tangent

q 𝑔(𝑧) = tanh(𝑧).
q Related to sigmoid: tanh(𝑧) = 2𝜎(2𝑧) − 1.
q It typically performs better

o since it resembles the identity function
o So long as the activations of the network can be

kept small.

(Goodfellow 2016)

Other hidden units
• The authors tested a feedforward network using
𝒉 = cos(𝑾𝑻 𝒙 + 𝒃) on the MNIST dataset and
obtained an error rate of less than 1%

• Linear hidden units offer an effective way of
reducing the number of parameters in a network
q Assume 𝑾𝑻 is p x n
q 𝑾𝑻 = 𝐕𝐓𝐔𝐓 where 𝐕𝐓 is pxq and 𝐔𝐓 is qxn
q In total we have qx(n+p) trainable params

o Much less than << pxn for small q

(Goodfellow 2016)

Roadmap
• Example: Learning XOR
• Gradient-Based Learning
• Hidden Units
• Architecture Design
• Back-Propagation

(Goodfellow 2016)

Architecture Basics

Width

D
ep

th

• ℎ ! = 𝑔 ! (𝑊 ! #𝑥 + 𝑏 !)
• ℎ " = 𝑔 " (𝑊 " #ℎ ! + 𝑏 ")
• …

(Goodfellow 2016)

Universal Approximator
Theorem

• One hidden layer is enough to represent (not learn)
an approximation of any function to an arbitrary
degree of accuracy

• So why deeper?
q Shallow nets may need (exponentially) more

width
q Shallow nets may overfit more

(Goodfellow 2016)

Bad idea: One hidden layer
• Consider binary functions over 𝑣 ∈ 0,1 '

q The image of any member of the possible
2' inputs can be 0 or 1
o In total, we have 2"! possible functions

q Selecting one such function requires 𝑂(2')
degrees of freedom

• Working with a single layer is sufficient to represent
‘any’ function
q Yet the width of the layer can be exponential, and

prone to overfitting

(Goodfellow 2016)

Montufar et. al. (2014)

Example: Absolute value rectification
q Has the same output for every pair

of mirror points
q The mirror axis of symmetry is given

by 𝑊ℎ + 𝑏
q A function computed on top of that

unit is simpler
q If we fold again, we get an even

simpler function, and so on ..

• A deep rectifier network can represent functions
with a number of regions that is exponential in
the depth of the network.

(Goodfellow 2016)

Exponential Representation
Advantage of Depth

We obtain an exponentially large number of piecewise
linear regions which can capture all kinds of repeating

patterns.

(Goodfellow 2016)

Why deep?
• Choosing a deep model encodes a very general

belief (or prior) that the function we want to learn
should involve composition of several simpler
functions

• Alternately, we can interpret the use of a deep
architecture as expressing a belief that the function
we want to learn is a computer program consisting
of multiple steps, where each step makes use of the
previous step’s output

• Empirically, greater depth does seem to result in
better generalization for a wide variety of tasks

(Goodfellow 2016)

Better Generalization with
Greater Depth

Task: transcribe multi-digit numbers from photographs of addresses

Layers

(Goodfellow 2016)

Large, Shallow Models Overfit
More

Figure 6.7

(Goodfellow 2016)

Other architectural
considerations

• Other architectures: CNN, RNN
• Skip connections: going from layer i to layer i + 2 or

higher.
q make it easier for the gradient to flow from output

layers to layers nearer the input.

Design some neural networks for fun:
https://playground.tensorflow.org/

https://playground.tensorflow.org/

(Goodfellow 2016)

Roadmap
• Example: Learning XOR
• Gradient-Based Learning
• Hidden Units
• Architecture Design
• Back-Propagation

(Goodfellow 2016)

Compute the gradient
• Forward propagation: 𝑥 → X𝑦 → J 𝜃

• Backprop: %&(()
%(

=?
q Computing derivatives by propagating information

backward through the network
q Simple and inexpensive
q Based on the chain rule:

o 𝐳 = 𝑾𝒙 + 𝒄
o 𝒉 = 𝑔 𝒛
o X𝑦 = 𝒘𝑻𝒉 + 𝑏
o 𝐽 X𝑦 = 𝑦 − X𝑦 #

𝜃 = 𝑾, 𝒄,𝒘, 𝑏
𝛻(𝐽 =?

𝜕𝐽
𝜕𝑐!

=
𝜕𝐽
𝜕 6𝑦

𝜕 6𝑦
𝜕ℎ!

𝜕ℎ!
𝜕𝑧!

𝜕𝑧!
𝜕𝑐!

𝜕𝐽
𝜕𝑊!!

=
𝜕𝐽
𝜕 6𝑦

𝜕 6𝑦
𝜕ℎ!

𝜕ℎ!
𝜕𝑧!

𝜕𝑧!
𝜕𝑊!!

(Goodfellow 2016)

Chain Rule
• More generally

q 𝒙 ∈ ℝ!, 𝒚 ∈ ℝ", 𝑧 ∈ ℝ

q 𝑧 = 𝑓 𝒚 = 𝑓 𝑔 𝒙
𝜕𝑧
𝜕𝑥#

=,
$

𝜕𝑧
𝜕𝑦$

𝜕𝑦$
𝜕𝑥#

q Vector notation:

o 𝛻𝒙𝑧 =
&𝒚
&𝒙

(
𝛻𝒚𝑧

o Or: 𝛻𝒙𝑧 = ∑$
&)
&*!

𝛻𝒙𝑦$
• Backprop consists of performing Jacobian-gradient product

for each operation in the graph.

𝑛×𝑚
Jacobian

matrix

(Goodfellow 2016)

Back-Propagation
• Back-propagation is “just the chain rule” of calculus

• But it’s a particular implementation of the chain rule

q Uses dynamic programming (table filling)

q Avoids recomputing repeated subexpressions

q Speed vs memory tradeoff

(Goodfellow 2016)

Simple Back-Prop Example

Fo
rw

ar
d

pr
op Back-prop

C
om

pu
te

 a
ct

iv
at

io
ns

C
om

pute derivatives
Compute loss

(Goodfellow 2016)

General implementation
Computation Graphs

Figure 6.8

Multiplication

ReLU layer

Logistic regression

Linear regression
and weight decay

Mini-batch

6𝑦 = 𝑥#𝑤
𝑢) = 𝜆∑w%

"

(Goodfellow 2016)

Repeated Subexpressions

Figure 6.9
Back-prop avoids computing this twice

(Goodfellow 2016)

Symbol-to-Symbol
Differentiation

Figure 6.10

(Goodfellow 2016)

Implementing the chain rule
• Given a computation graph, we wish to compute

*+ !

*+ " , for 𝑖 = 1,… , 𝑛%
q 𝑢 ' can be the cost function
q 𝑢 % are the trainable parameters of the network
q 𝑢 % is associated with an operation 𝑓

o 𝑢 % = 𝑓 𝔸% where 𝔸% is the set of parents of 𝑢 %

𝜕𝑢 '

𝜕𝑢 % = a
,:%∈/0(+ #)

𝜕𝑢 '

𝜕𝑢 ,
𝜕𝑢 ,

𝜕𝑢 %

(Goodfellow 2016)

Forward propagation

(Goodfellow 2016)

Backward propagation

𝛿𝑢'

𝛿𝑢' = 1

(Goodfellow 2016)

Efficiency
• The amount of computation required for performing the

back-propagation scales linearly with the number of
edges in G,
q the computation for each edge corresponds to

computing a partial derivative (of one node with
respect to one of its parents)

q as well as performing one multiplication and one
addition.

• Naïve approach:

(Goodfellow 2016)

Two implementaion approaches
• Take a computational graph and a set of numerical

values for the inputs to the graph, then return a set of
numerical values describing the gradient at those input
values. We call this approach “symbol-to-number”
differentiation. This is the approach used by PyTorch.

• Another approach is to take a computational graph and
add additional nodes to the graph that provide a
symbolic description of the desired derivatives. This is
the approach taken TensorFlow.
q Because the derivatives are just another

computational graph, it is possible to run back-
propagation again, derivatives.

(Goodfellow 2016)

Forward propagation for a neural network

(Goodfellow 2016)

Gradients of biases and
weights

• We have 𝒂(𝒌) = 𝒃(𝒌) +𝑾(𝒌)𝒉(𝒌4𝟏)

q
*6

*7"
$ = *8

*0"
$. 1 + 𝜆

*9

*7"
$

q Vectorized: 𝛻𝒃 𝒌 𝐽 = 𝛻𝒂 𝒌 𝐿 + 𝜆𝛻𝒃 𝒌 Ω

q
*6

*<",#
$ = *8

*0"
$. ℎ,

=4! + 𝜆 *9

*<",#
$

q Vectorized: 𝛻𝑾 𝒌 𝐽 = (𝛻𝒂 𝒌 𝐿) ℎ =4! '+ 𝜆𝛻𝑾 𝒌 Ω

Outer Product

(Goodfellow 2016)

Gradient of representations
• We have 𝒂(𝒌) = 𝒃(𝒌) +𝑾(𝒌)𝒉(𝒌4𝟏)

q 𝛻𝒉 𝒌(𝟏 𝐿 = *0 $

@ $(

#
𝛻𝒂 𝒌 𝐿 = 𝑾(𝒌)𝑻 𝛻𝒂 𝒌 𝐿

• 𝒉(𝒌) = 𝑓(𝒂(𝒌))
q 𝛻𝒂 𝒌 𝐿 = 𝛻𝒉 𝒌 𝐿 ⊙ 𝑓A 𝒂 𝒌

(Goodfellow 2016)

Backward propagation for a neural network

(Goodfellow 2016)

Gradients for matrix
multiplication

• 𝐻𝑊 = 𝑈
q 𝛻𝑯𝑓 = 𝛻𝑼𝑓 𝑊#

q 𝛻𝑾𝑓 = 𝐻#𝛻𝑼𝑓
• Useful to backprop over a batch of samples
• A layer receives 𝐺:

q 𝐺𝑊# is the update for 𝑊
q 𝐻#𝐺 is back propagated

(Goodfellow 2016)

Backprop for a batch of samples

Cost forward propagation: 𝑂(𝑤)multiply-adds
Cost backward propagation: 𝑂(𝑤)multiply-adds
Memory-cost: 𝑂(𝑚𝑛!)

𝐽 = 𝐽'() + 𝜆(∑𝑊*+
, -

+ ∑𝑊*+
- -
)

𝐺 = 𝛻+($)𝐽,-.

𝛻/𝐽,-. = 𝐺𝑊0

𝐻𝑊(1) = 𝑈(1)

𝛻2($)𝐽 = 𝐻0𝐺 + 2𝜆𝑊(1)

𝑋𝑊(3) = 𝑈(3)

𝛻+ & 𝐽,-. = 𝐺′

𝛻2(&)𝐽 = 𝑋0𝐺′ + 2𝜆𝑊(3)

(Goodfellow 2016)

Backprop in deep learning vs. the general
field of automatic differentiation

• Reverse mode accumulation
• Forward mode accumulation
• Simplifying algebraic expressions (e.g. Theano)

q 𝑞! =
"#$ %"

∑# "#$ %#

q 𝐽 = −∑𝑝' log 𝑞'

q
()
(%"

= 𝑞! − 𝑝!

• Specialized libraries vs. automatic generation
q Data structures with bprop() method

• Backprop is not the only way or the optimal way of
computing the gradient, but it is practical

(Goodfellow 2016)

High-order derivatives
• Properties of the Hessian may guide the learning
• 𝐽 𝜃 is a function ℝ0 → ℝ

q The hession of 𝐽 𝜃 is in ℝ0×0
• In typical deep learning, 𝑛 can be in the billions

q Computing the Hessian is not practical
• Krylov methods are a set of iterative techniques for

performing various operations like:
q approximately inverting a matrix
q or finding eigenvectors or eigenvalues,
q without using any operation other than matrix-vector

products.

(Goodfellow 2016)

Hessian-vector Products

• Compute 𝑯𝒆(𝒊) for all 𝑖 = 1,… , 𝑛
• Where 𝒆(𝒊) is the one hot vector:

q 𝑒E
% = 1

q 𝑒F
% = 0

(Goodfellow 2016)

Questions
• Watch Ian’s lecture:

q https://drive.google.com/file/d/0B64011x02sIkREx
CY0FDVXFCOHM/view

https://drive.google.com/file/d/0B64011x02sIkRExCY0FDVXFCOHM/view

