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Definition
• “Regularization is any modification we make to a 

learning algorithm that is intended to reduce its 
generalization error but not its training error.”

• Developing more effective regularization strategies has 
been one of the major research efforts in the field.

• Deep learning take: 
q the best fitting model (in the sense of minimizing 

generalization error) is a large model that has been 
regularized appropriately!
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Regularization strategies
• Constraints: adding restrictions on the parameter 

values. 
• Soft constraints:  Adding extra terms in the objective 

function:
q Encode Prior knowledge.
q Generic preference for a simpler model

• Ensemble methods: 
q Combine multiple hypotheses to explain the 

training data
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Parameter norm penalties

• 𝜃:	all	learnable	parameters	(weights	and	biases)	
• 𝑤:	parameters	affected	by	a	norm	penalty	

q we	take	weights	and	exclude	biases
• 𝛼 ∈ 0,∞

q 𝛼 = 0, no regularization 
• Ω: norm function

q L1 
q L2
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𝐿! Parameter regularization
aka. ridge regression  

Ω 𝜽 =
1
2
𝒘 !

! =
1
2
𝒘𝑻𝒘

• 𝛻𝒘
$
!
𝒘𝑻𝒘 = 𝒘

• Update step: 𝒘 ← 𝒘− 𝜖 𝛼 𝒘 − 𝜖𝛻𝒘𝐽
q 𝒘 ← 𝒘(1 − 𝜖𝛼) − 𝜖𝛻𝒘𝐽

• Let 𝒘∗ = argmin
𝒘

𝐽

• Let M𝒘 = argmin
𝒘

N𝐽

• Approximating 𝐽 in the neighborhood of 𝒘∗:
q O𝐽 𝒘 = 𝐽 𝒘∗ + 𝒘−𝒘∗ &𝑯 𝒘−𝒘∗

Weights are 
shrunk by a 
multiplicative 
factor

No first order 
term since w* is 
the minimum 
(𝛻𝐽 𝒘∗ = 𝟎)
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How "𝒘 (regularized solution) compares to 
unregularized solution 𝒘*?

• What	is	the	gradient	of	 /𝐽 𝒘 at 2𝒘?
• 𝛻/𝐽 2𝒘 = 𝑯 2𝒘 −𝒘∗

• 𝛻8𝐽 2𝒘 = 𝑯 2𝒘 −𝒘∗ + 𝛼2𝒘 = 𝟎
q 𝑯+ 𝛼𝑰 2𝒘 = 𝑯𝒘∗

q 2𝒘 = 𝑯+ 𝛼𝑰 "𝟏𝑯𝒘∗

• 𝑯 is real and symmetric 
q 𝑯 = 𝑸𝚲𝐐𝐓

• !𝒘 = 𝑸𝚲𝐐𝐓 + 𝛼𝑰 "𝟏 𝑸𝚲𝐐𝐓 𝐰∗ = 𝑸𝚲𝐐𝐓 +𝑸𝛼𝑰𝑸𝑻 "𝟏 𝑸𝚲𝐐𝐓 𝐰∗

• !𝒘 = 𝑸 𝚲 + 𝛼𝑰 𝑸𝑻 "𝟏 𝑸𝚲𝐐𝐓 𝐰∗ = 𝑸 𝚲 + 𝛼𝑰 "𝟏𝑸𝑻𝑸𝚲𝐐𝐓𝐰∗

!𝒘 = 𝑸 𝚲 + 𝛼𝑰 "𝟏𝚲𝐐𝐓𝐰∗
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Interpretation 
!𝒘 = 𝑸 𝚲 + 𝛼𝑰 +𝟏𝚲𝐐𝐓𝐰∗

• 𝐰∗ projections against the eigen vectors of 𝑯 are 
scaled 

q Component 𝑖 is multiplied by /!
/!01

q 𝜆2 ≫ 𝛼 ⇒ the effect of regularization is small 
q 𝜆2 ≪ 𝛼 ⇒ the corresponding component is shrunk 

by a factor of 𝛼
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Weight Decay

Figure 7.1
Regularized 

solution

Unregularized 
solution

Small Eigen 
vector of H
(regularization 
effect is large)

+𝐽 𝒘 = 𝐽 𝒘∗ +
1
2
𝒘 −𝒘∗ "𝑯 𝒘−𝒘∗

Large Eigen 
vector of H 

(regularization effect 
is small)

1𝐽 𝒘

𝛼w3𝑤
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Special case: Linear Regression 
• Cost function: 𝑿𝒘− 𝒚 & 𝑿𝒘− 𝒚 + $

!
𝛼𝒘𝑻𝒘

• Normal equations 
q 𝑿𝑻𝑿𝒘− 𝑿𝑻𝒚 + 𝛼𝒘 = 𝟎 ⇒ (𝑿𝑻𝑿 + 𝛼𝑰)𝒘 = 𝑿𝑻𝒚

q 𝒘 = 𝑿𝑻𝑿 + 𝛼𝑰 1𝟏𝑿𝑻𝒚
• Basically, we are adding 𝛼 to the diag.

q The diag. elements correspond to the variance of 
each feature 

• We perceive the data as having higher variance
q A feature having low covariance with output got 

shrunk even more due to this added variance 

Proportional to the 
covariance matrix

Covariance 
feature-output
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𝐿! regularization 
• Ω 𝜽 = 𝒘 " = ∑# 𝑤#
• '𝐽 𝒘; 𝑿, 𝒚 = 𝛼 𝒘 " + 𝐽(𝒘;𝑿, 𝒚)

q 𝛻𝒘 '𝐽 𝒘; 𝑿, 𝒚 = 𝛼 sign 𝒘 + 𝛻𝒘𝐽 𝒘; 𝑿, 𝒚

• 6𝐽 𝒘 = 𝐽 𝒘∗ + "
&
𝒘−𝒘∗ '𝑯 𝒘−𝒘∗

q 𝛻 6𝐽 𝒘 = 𝑯 𝒘−𝒘∗

• Assume that 𝑯 = diag ( 𝐻",", … , 𝐻),) ), 𝐻#,# > 0
q Linear regression after PCA

• '𝐽 𝒘 ≈ 𝐽 𝒘∗ + ∑#
"
&
𝐻#,# 𝑤# −𝑤#∗ & + 𝛼 𝑤#

• Solution: 𝑤# = 𝑠𝑖𝑔𝑛 𝑤#∗ max 𝑤#∗ −
*
+&,&

, 0
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Interpretation 

𝑤# = 𝑠𝑖𝑔𝑛 𝑤#∗ max 𝑤#∗ −
𝛼
𝐻#,#

, 0

• If 𝑤#∗ > 0:
q 𝑤#∗ >

*
+&,&

⇒ 𝑤# is shifted towards 0 by *
+&,&

q 𝑤#∗ ≤
*
+&,&

⇒ 𝑤# = 0

• If 𝑤#∗ < 0:
q −𝑤#∗ >

*
+&,&

⇒ 𝑤# = 𝑤# +
*
+&,&

o 𝑤# is shifted towards 0 by *
+&,&

q −𝑤#∗ ≤
*
+&,&

⇒ 𝑤# = 0
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𝐿! regularization sparsity
• The sparsity property induced by L1 regularization can be 

used as a feature selection mechanism
q LASSO regression (least absolute shrinkage and 

selection operator)
• Equivalent to MAP Bayesian estimation with Laplace prior

q the prior is an isotropic Laplace distribution over 𝑤 ∈ ℝ):

o Laplace 𝑤#; 0,
"
*
= "

&*
exp(−𝛼 𝑤# )

o log Laplace 𝑤#; 0,
"
*
= − log 2𝛼 − 𝛼 𝑤#

log 𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 ∝ log 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 + log 𝑝𝑟𝑖𝑜𝑟
max log 𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 ⟺ min negative log likelihood − log prior
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Norm Penalties
• MAP: Maximum A-Posteriori
• L1: 

q Encourages sparsity, 
q equivalent to MAP Bayesian estimation with 

Laplace prior

• Squared L2: 
q Encourages small weights, 
q equivalent to MAP Bayesian estimation with 

Gaussian prior
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Explicit constraints
• We want to constrain Ω(𝜃) to be less than some 

constant 𝑘
q construct a generalized Lagrange function

• We can fix 𝛼 but lose 𝑘

• The regularized training problem :𝐽 is equivalent to 
the explicit constraints problem for an unknown 𝑘! 
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Projection
• Sometimes we may wish to use explicit constraints 

rather than penalties. 
q we can modify algorithms such as stochastic gradient 

descent to take a step downhill on 𝐽 𝜃 and then 
project 𝜃 back to the nearest point that satisfies 
Ω 𝜃 < 𝑘. 

• How to project? 
q Project into unit L2 ball:
q Project into unit L1 ball: 

o No closed-form solution 
o Numerical solution 
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Dataset Augmentation
• Best way to regularize is to train with more data 

q create fake data and add it to the training set.
q We can generate new (𝒙, 𝑦) pairs easily just by 

transforming the 𝒙 inputs in our training set.
q particularly effective for object recognition

o translating the training images a few pixels in each 
direction

o rotating the image or scaling
• Some inappropriate transformations: 

q horizontal flips: ‘b’ and ‘d’, 
q 180◦ rotations: ‘6’ and ‘9’, 
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Dataset Augmentation
Affine 

Distortion Noise Elastic 
Deformation

Horizontal 
flip

Random 
Translation Hue Shift



(Goodfellow 2016)

Noise Robustness
• Noise with infinitesimal variance can be added: 

q At the input
q At the hidden layers 
q At the weights: 
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Injecting noise at the weights

• For 𝜂 small: 
q \𝑦3𝑾 = \𝑦 𝑾+ 𝝐 = \𝑦 𝑾 + 𝝐&𝛻𝒘 \𝑦(𝑾)

q 𝔼4 𝒙,7,𝝐𝑾 \𝑦3𝑾
! = 𝔼4 𝒙,7 \𝑦! +

𝔼4 𝝐𝑾 𝜖! 𝔼4 𝒙,7 𝛻𝒘 \𝑦 ! + 0

q 𝔼4 𝒙,7,𝝐𝑾 \𝑦3𝑾
! = 𝔼4 𝒙,7 \𝑦! + 𝜂𝔼4 𝒙,7 𝛻9 \𝑦 !

q 𝐽𝑾 = 𝐽 + 𝜂 𝔼4 𝒙,7 𝛻9 \𝑦(𝒙) !

q Equivalent to adding a regularization term
• Pushes the model into regions where the model is 

relatively insensitive to small variations in the weights
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Special case: linear 
regression

• ;𝐽𝑾 = 𝐽 + 𝜂 𝔼5 𝒙,8 𝛻9 ?𝑦(𝒙) :

• ?𝑦 = 𝒘3𝒙 + 𝑏
• 𝔼5 𝒙,8 𝛻𝒘 ?𝑦(𝑥) : = 𝔼5 𝒙 𝒙 :

• which is not a function of parameters and therefore 
does not contribute to the cost function w.r.t 𝒘:
q No regularization effect!
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Injecting noise at the output 
targets 

• Most datasets have some amount of mistakes in the y labels. 
• It can be harmful to maximize log 𝑝(𝑦 | 𝑥) when 𝑦 is a mistake. 
• One way to prevent this is to explicitly model the noise on the labels. 

q For example, we can assume that for some small constant 𝜖, the 
training set label 𝑦 is correct with probability 1 − 𝜖, 

q and otherwise any of the other possible labels might be correct. 
• This assumption is easy to incorporate into the cost function analytically,

q rather than by explicitly drawing noise samples. 
q For example, label smoothing regularizes a model based on a softmax

with 𝑘 output values 
o by replacing the hard 0 by !

"#$
o and 1 by 1 − 𝜖

• Label smoothing has the advantage of preventing the pursuit of hard 
probabilities without discouraging correct classification.
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Multi-Task Learning

Figure 7.2

Task specific 
parameters

Among the factors that 
explain the variations 
observed in the data
associated with the 
different tasks, some are 
shared across two or 
more tasks.

Unsupervised 
Learning context
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Learning Curves

Figure 7.3

Early stopping: terminate while validation set
performance is better
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Early stopping 
• probably the most commonly used form of 

regularization in deep learning.
q the number of training steps (or training time) is 

just another hyperparameter.
• The cost is running the validation set evaluation 

periodically during training
q Reduce the validation set 
q Evaluate the validation loss less frequently 

• Periodically save the trained model 
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Early stopping algorithm
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Re-use the validation set

Less well-
behaved
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Early stopping as a 
regularizer

• 𝜖 (learning rate) and 𝜏 (number of training steps) limits the the volume of 
parameters reachable from 𝜽𝟎 (initial parameters) 

• Early stopping is equivalent to L2 regularization in the case of: 
q a simple linear model
q with a quadratic error function 
q and simple gradient descent

• 2𝐽 𝒘 = 𝐽 𝒘∗ + $
'
𝒘−𝒘∗ (𝑯 𝒘−𝒘∗

q 𝛻𝒘 2𝐽 𝒘 = 𝑯 𝒘−𝒘∗

• 𝒘(𝝉) = 𝒘(𝝉#𝟏) − 𝜖𝛻𝒘 2𝐽 𝒘 𝝉#𝟏 = 𝒘 𝝉#𝟏 − 𝜖 𝑯 𝒘(𝝉#𝟏) −𝒘∗

q 𝒘(𝝉) = 𝑰 − 𝜖𝑯 𝒘 𝝉#𝟏 + 𝜖𝑯𝒘∗

q 𝒘(𝝉) −𝒘∗ = 𝑰 − 𝜖𝑯 𝒘 𝝉#𝟏 + 𝜖𝑯 − 𝑰 𝒘∗

q 𝒘(𝝉) −𝒘∗ = 𝑰 − 𝜖𝑯 (𝒘 𝝉#𝟏 −𝐰∗)
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The number of steps 𝜏 corresponds to some value of the weight 
decay coefficient 𝛼

• 𝒘(𝝉) −𝒘∗ = 𝑰 − 𝜖𝑯 (𝒘 𝝉&𝟏 −𝐰∗)

q 𝑯 = 𝑸𝚲𝑸𝑻

q 𝒘(𝝉) −𝒘∗ = 𝑸 𝑰 − 𝜖𝚲 𝑸𝑻 𝒘 𝝉&𝟏 −𝐰∗

q 𝑸𝑻 𝒘 𝝉 −𝒘∗ = 𝑰 − 𝜖𝚲 𝑸𝑻 𝒘 𝝉&𝟏 −𝐰∗

o if 𝜖 small ⇒ 1 − 𝜖𝜆) < 1, every step brings closer to 𝒘∗

• Assume we start with 𝒘 𝟎 = 𝟎:
q 𝑸𝑻𝒘 𝟏 = 𝑰 − 𝑰 − 𝜖𝚲 𝑸𝑻𝒘∗

q 𝑸𝑻𝒘 𝟐 = 𝑰 − 𝑰 − 𝜖𝚲 𝟐 𝑸𝑻𝒘∗

q 𝑸𝑻𝒘 𝝉 = 𝑰 − 𝑰 − 𝜖𝚲 𝝉 𝑸𝑻𝒘∗

• L2 regularization: 
q 𝑸𝑻;𝒘 = 𝚲 + 𝛼𝑰 &𝟏𝚲𝐐𝐓𝐰∗

q 𝑸𝑻;𝒘 = 𝑰 − 𝚲 + 𝛼𝑰 &𝟏𝛼 𝐐𝐓𝐰∗

• Compare: 
q 𝑰 − 𝚲 + 𝛼𝑰 &𝟏𝛼 and 𝑰 − 𝑰 − 𝜖𝚲 𝝉

q 𝚲 + 𝛼𝑰 &𝟏𝛼 = 𝑰 − 𝜖𝚲 𝝉

𝜆!
𝜆! + 𝛼

= 1 −
𝛼

𝜆! + 𝛼

1 − 1 − 𝜖𝜆. /
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Early stopping advantage

•
0

1"20
= 1 − 𝜖𝜆. / ⇒ 𝜏 log 1 − 𝜖𝜆. = log $

$2
#"
$

• Assume log 1 + 𝑥 ≈ 𝑥 for small enough 𝑥
q Assume 1"

0
≪ 1 and 𝜖𝜆. ≪ 1

• −𝜏𝜖𝜆. ≈ − 1"
0"
⇒ 𝛼 ≈ $

/!

q the number of training iterations 𝜏 plays a role inversely proportional to 
the L2 regularization parameter, 

q and the inverse of 𝜏𝜖 plays the role of the weight decay coefficient.
• Early stopping advantage over weight decay:

q early stopping automatically determines the correct amount of 
regularization 

q while weight decay requires many training experiments with different 
values of its hyperparameter.
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Early Stopping and Weight 
Decay

Figure 7.4
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Parameter tying 
• Formally, we have model 𝐴 with parameters 𝒘 ;

and model 𝐵 with parameters 𝒘(=)

• The two models map the input to two different, but 
related outputs: 
q ?𝑦 ; = 𝑓(𝒘(;), 𝒙)
q ?𝑦 = = 𝑔(𝒘(=), 𝒙)
q ∀𝑖,𝒘(;) should be close to 𝒘(=)

• Regularization 
Ω 𝒘(;), 𝒘(=) = 𝒘(;) −𝒘(=)

:
:
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Parameter sharing (e.g. CNN) 

• Force sets of parameters to be equal.
• Advantage: 

q only a subset of the parameters (the unique set) 
needs to be stored in memory.

• Natural images have many statistical properties that are 
invariant to translation.
q a photo of a cat remains a photo of a cat if it is 

translated one pixel to the right
q Parameter sharing has allowed CNNs to dramatically 

lower the number of unique model parameters
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Sparse Representations

Sparse 
parameters

Sparse 
representations
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Bagging
• Bagging (short for bootstrap aggregating) is a 

technique for reducing generalization error by 
combining several models 
q train several different models separately
q the models vote on the output for test examples

• Bagging is an example of model averaging.
q The general term is Ensemble methods.

• The reason that model averaging works is that 
different models will usually not make all the same 
errors on the test set.
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Bagging example 
• Consider for example a set of 𝑘 regression models. 
• Suppose that each model makes an error 𝜖. on each example, with the 

errors drawn from a zero-mean multivariate normal distribution 
q with variances 𝐸[𝜖.'] = 𝑣
q and covariances 𝐸 𝜖.𝜖3 = 𝑐

• Then the error made by the average prediction of all the ensemble models 
is $

"
∑. 𝜖.

• The expected squared error of the ensemble predictor is:

q 𝑐 = 𝑣 ⇒ no gain, the expected error remains 𝑣
q 𝑐 = 0 ⇒ max gain, the expected error is 𝑣/𝑘
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Ensemble methods vs. bagging 
• Different ensemble methods construct the ensemble of models in 

different ways. 
• Bagging is a method that allows the same kind of model, training 

algorithm and objective function to be reused several times
• Bagging involves constructing 𝑘 different datasets. 

q Each dataset has the same number of examples as the original 
dataset, 

q but each dataset is constructed by sampling with replacement 
from the original dataset.
o with high probability, each dataset is missing some of the 

examples from the original dataset and also contains several 
duplicate examples

o on average around 2/3 of the examples from the original 
dataset are found in the resulting training set, if it has the 
same size as the original
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Bagging
the detector learns 
that a loop on top of 
the digit corresponds 
to an 8.

the detector learns
that a loop on the bottom 
of the digit corresponds to 
an 8.
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Why 2/3 ? 
• N:	number	of	items	
• K:	number	of	unique	items	
• A:	number	of	drawn	items	

𝑃 𝑘 =

𝑁!
𝑁 − 𝑘 !
𝑁;

𝐴
𝑘

•
𝐴
𝑘 is a Stirling number of the second kind

All permutations of 𝑘
among 𝑁 items

All possible ways to 
draw A items

All ways to distribute 
𝐴 items among k 
subsets such as no 
subset is left empty
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Expected number of duplicates

• The indicator 𝑑2 corresponds to original item 𝑖, 
taking the value of one if 𝑖 is present and zero if not

• 𝑃 𝑑2 = 0 = 1 − ?
@

;

• 𝐸[𝑑2] = 1 − 1 − ?
@

;

• 𝐸 ∑𝑑2 = ∑𝐸 𝑑2 = 𝑁𝐸 𝑑2 = 𝑁 1 − 1 − ?
@

;

• 𝐴 = 𝑁 ⇒ 𝐸 𝑘 = 𝑁 1 − 1 − ?
@

@
→ 𝑁 1 − 𝑒+?

• 𝐸 𝑘 ≈ 0.632 𝑁
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More about bagging
• Neural networks reach a wide enough variety of 

solution points that they can often benefit from 
model averaging

• Model averaging is an extremely powerful and 
reliable method for reducing generalization error.
q Its use is usually discouraged when 

benchmarking algorithms for scientific papers
• Machine learning contests are usually won by 

methods using model averaging over dozens of 
models.
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Dropout
• Dropout provides an inexpensive approximation to training 

and evaluating a bagged ensemble of exponentially many 
neural networks.
q removing non-output units from an underlying base 

network
o by multiplying its output value by zero

• Each time we load an example into a minibatch, we 
randomly sample a different binary mask to apply to all of 
the input and hidden units in the network.
q The probability of sampling a mask value of one (causing 

a unit to be included) is a hyperparameter fixed before 
training begins.
o Typically, an input unit is included with probability 0.8 

and a hidden unit is included with probability 0.5
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Dropout
Figure 7.6

In networks with wider layers, the 
probability of dropping all possible 
paths from inputs to outputs 
becomes smaller.
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Dropout vs. bagging
• More formally, suppose that a mask vector 𝝁 specifies which units 

to include, and 𝐽(𝜽, 𝝁) defines the cost of the model defined by 
parameters 𝜽 and mask 𝝁.
q Then dropout training consists in minimizing 𝔼𝝁𝐽 𝜽, 𝝁 .
q The expectation contains exponentially many terms (2/)

• Dropout training is not quite the same as bagging training. 
q In the case of bagging, the models are all independent. 
q In the case of dropout, the models share parameters
q In bagging, each model is trained to convergence on its 

respective training set
q In dropout, a tiny fraction of the possible sub-networks are each 

trained for a single step
q In both, the training set encountered by each sub-network is a 

subset of the original training set sampled with replacement
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Computational graph of dropout

• The entries of 𝝁 are binary and are 
sampled independently from each 
other, 
q And is not a function of the 

current value of the model 
parameters or the input example
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Inference
• To make a prediction, a bagged ensemble must accumulate votes 

from all of its members. 
q We refer to this process as inference

• In bagging, the prediction of the ensemble is 0
1
∑2304 𝑝 2 𝑦 𝒙

• In dropout, the arithmetic mean is ∑𝝁 𝑝(𝝁)𝑝 𝑦 𝒙, 𝝁
• The geometric mean is 

N𝑝ensemble 𝑦 𝒙 = -. R
𝝁

𝑝 𝑦 𝒙, 𝝁

• To guarantee that the result is a probability distribution,
q we impose that none of the sub-models assigns probability 0 to 

any event, 
q and we renormalize the resulting distribution.
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Weight scaling inference rule
• Evaluate with the trained model with all units, 

q But with the weights going out of unit 𝑖 multiplied by the probability of including unit 𝑖 (e.g. 
½) 

q This corresponds to predict the geometric mean of the ensemble! 
• Consider a softmax regression classifier with 𝑛 input variables represented by the vector 𝑣:

𝑃 𝑦 = 𝑦! 𝒗 = softmax 𝑾𝑻𝒗 + 𝒃 !

• To index into the family of submodels: 
𝑃 𝑦 = 𝑦! 𝒗 = softmax 𝑾𝑻(𝒗⊙ 𝒅) + 𝒃 !

H𝑝ensemble 𝑦 = 𝑦! 𝒙 = !" O
𝒅∈ (,* "

softmax 𝑾𝑻(𝒗⊙ 𝒅) + 𝒃 !

H𝑝ensemble 𝑦 = 𝑦! 𝒙 ∝ exp
1
2+

S
𝒅∈ (,* "

𝑾𝑻 𝒗⊙ 𝒅 + 𝒃 !

= exp
1
2+

2+,*𝑾𝑻𝒗 + 2+𝒃 ! = exp
1
2
𝑾𝑻𝒗 + 𝒃

!
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Another perspective of 
dropout 

• (1) Droput is bagging with parameter sharing 
• (2) Information erasing: Each hidden unit must be able to perform 

well regardless of which other hidden units are in the model
q Dropout thus regularizes each hidden unit to be not merely a 

good feature but a feature that is good in many contexts.
q For example, if the model learns a hidden unit ℎ2 that detects a 

face by finding the nose,
q then dropping ℎ2 corresponds to erasing the information that 

there is a nose in the image. 
q The model must learn another ℎ2, 

o either that redundantly encodes the presence of a nose, 
o or that detects the face by another feature, such as the 

mouth
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Adversarial examples
• Search for an input 𝒙′ near a data point 𝒙 such that the 

model output is very different at 𝒙′
• In many cases, 𝒙’ can be so similar to 𝒙 that a human 

observer cannot tell the difference between the original 
example and the adversarial example,
q but the network can make highly different predictions.

• Adversarial training
q training on adversarially perturbed examples from the 

training set
• Adversarial examples are interesting in the context of 

regularization
q because one can reduce the error rate on the original 

i.i.d. test set via adversarial training
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Adversarial Examples

Figure 7.8

Training on adversarial examples is mostly 
intended to improve security, but can sometimes 
provide generic regularization.
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Aversarial training 
• The value of a linear function can change very rapidly if it has 

numerous inputs. 
q If we change each input by 𝜖, then a linear function with weights 
𝑤 can change by as much as 𝜖 𝒘 0, which can be a very large 
amount if 𝒘 is high-dimensional. 

• Adversarial training discourages this highly sensitive locally linear 
behavior by encouraging the network to be locally constant in the 
neighborhood of the training data. 

• This can be seen as a way of explicitly introducing a local 
constancy prior into supervised neural nets.
q The classifier may then be trained to assign the same label to 𝒙

and 𝒙’.
q The assumption motivating this approach is that different 

classes usually lie on disconnected manifolds, and a small 
perturbation should not be able to jump from one class manifold 
to another class manifold.
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Conclusion 
• This chapter has described most of the general 

strategies used to regularize neural networks. 
• Regularization is a central theme of machine 

learning

Our next topic is: optimization


