
Optimization for Training Deep
Models

Lecture slides for Chapter 8 of Deep Learning
www.deeplearningbook.org

Ian Goodfellow
Adapted by m.n. for CMPS 392

(Goodfellow 2016)

Goal

• The network training problem is important and expensive
q It is quite common to invest days to months of time on

hundreds of machines in order to solve even a single
instance of this problem

• Finding the parameters 𝜃 of a neural network that
significantly reduce a cost function 𝐽(𝜃),
q Which typically includes a performance measure

evaluated on the entire training set
q As well as additional regularization terms.

• Optimization algorithms:
q adapt their learning rates during training
q or leverage information contained in the second

derivatives of the cost function.

(Goodfellow 2016)

Optimization vs. Machine learning

Optimization Machine Learning

0-1 Loss (accuracy) Surrogate loss function
(negative log likelihood)

𝑝!"#" known
Reduce generalization error

𝑝!"#" unknown
�̂�!"#" known

Direct Indirect

Halt at a local minimum
(gradient very small)

Early stopping
(convergence criterion is met)

(gradient can still be large)

(Goodfellow 2016)

Why Minibatch algorithms?

1. The objective function decomposes as a sum over
the training examples

2. Estimating the mean has a standard error of !
"

q Training with a batch 100 times bigger reduces
the error by a factor of only 10

3. Redundancy in the training set

(Goodfellow 2016)

What is a good batch size?
• Larger batches provide a more accurate estimation fo the

gradient, but with less than linear returns
• Examples of the batch are typically processed in parallel

using multi-core architectures which get under-utilized by
small size batches.

• For many hardware setups, the limiting factor is most often
the memory to store the batch

• If using GPUs, it is common for power of 2 batch sizes to
offer better runtime (ranging from 32 to 256, 16 for large
models)

• Small batches can offer a regularization effect
q At the cost of a small learning rate to maintain stability
q And a large total training runtime

• It is also very important to shuffle the data

(Goodfellow 2016)

Challenges in Neural Network
optimization

• Ill-conditioning:

q a step of −𝜖𝑔 adds #
$
𝜖$𝑔%𝐻𝑔 − 𝜖𝑔%𝑔 to the cost

q Ill conditioning is a problem when #
$
𝜖$𝑔%𝐻𝑔 > 𝜖𝑔%𝑔

q To detect the problem, monitor both 𝑔%𝑔 and 𝑔%𝐻𝑔

(Goodfellow 2016)

Local minima in neural networks
• Local minima with equivalent loss function value:

q Weight space symmetry:
o take a neural network and modify layer 1 by swapping the

incoming weight vector for unit 𝑖 with the incoming weight
vector for unit 𝑗, then doing the same for the outgoing weight
vectors

o There are 𝑛!! ways of arranging the hidden units (depth 𝑚,
width 𝑛)

q scale all of the incoming weights and biases of a unit by 𝛼 and
scale all of its outgoing weights by 1/𝛼.

• Today, experts suspect that, for sufficiently large neural networks,
most local minima have a low cost function value
q A test that can rule out local minima as the problem is to plot

the norm of the gradient over time.
o the gradient does not shrink to insignificant size → the

problem is not getting stuck at a critical point!

(Goodfellow 2016)

Saddle points

• In high dimensional spaces, local minima are rare and saddle points are more
common.
q Imagine that the sign of each eigenvalue (of 𝐻) is generated by flipping a

coin.
q Hessian becomes more likely to be positive as we reach regions of lower

cost
q gradient descent empirically seems to be able to escape saddle points

o For Newton’s method, it is clear that saddle points constitute a problem
q Flat regions of high cost remains a challenge

o gradient and hessian are 0
gradient descent
escaping a
saddle point

(Goodfellow 2016)

Cliffs and Exploding Gradients

(Goodfellow 2016)

Vanishing and exploding gradient
• Suppose that a computational graph contains a path that

consists of repeatedly multiplying by a matrix 𝑊.
q After 𝑡 steps, this is equivalent to multiplying by 𝑊&.

• Suppose that W has an eigen decomposition
𝑊 = 𝑉 𝑑𝑖𝑎𝑔 𝜆 𝑉'#

𝑊& = 𝑉𝑑𝑖𝑎𝑔 𝜆 𝑉'# & = 𝑉 𝑑𝑖𝑎𝑔 𝜆 &𝑉'#

q eigenvalue 𝜆(> 1will explode
q eigenvalue 𝜆(< 1will vanish

• Recurrent neural networks use the same matrix 𝑊 at
each time step

(Goodfellow 2016)

Poor Correspondence between Local and
Global Structure

(Goodfellow 2016)

What is a good learning rate?

• It is common to decay the learning rate linearly until iteration 𝜏
q 𝜖" = 1 − "

#
𝜖$ +

"
#
𝜖#

q After iteration 𝜏, it is common to leave 𝜖 constant
q Parameters to choose are 𝜖$, 𝜖# , 𝜏:

o 𝜏 is usually set as set to the number of iterations required to
make a few hundred epochs

o 𝜖# should be set to roughly 1% the value of 𝜖$
o To set 𝜖$, monitor the oscillations in the learning curve:

• High learning rate may cause instability
• Gentle oscillations are ok especially if dropout is used
• Low learning rate: learning proceeds slowly, and may

become stuck
q Monitor the first iterations and choose an initial rate higher than

the best performing rate

(Goodfellow 2016)

Momentum
• From physics: Momentum = mass x velocity

q Mass = 1

q 𝑣 𝑡 = !" #
!#

q 𝑓 𝑡 = !$ #
!#

o One force is −𝛻"𝐽 𝜃
o Another is −𝑣 𝑡 (viscous drag)

q 𝑣 ← 𝛼 𝑣 − 𝜖𝛻"
%
&
∑𝐿 𝑓 𝑥 ' ; 𝜃 , 𝑦 '

q 𝜃 ← 𝜃 + 𝑣
• Imagine you are pushing a particle through parameter space

q The previous gradients contribute to the new direction that should be taken
• We can think of the particle as being like a hockey puck sliding down an icy

surface.
q Whenever it descends a steep part of the surface, it gathers speed and

continues sliding in that direction until it begins to go uphill again.

𝛼 ∈ 0,1

(Goodfellow 2016)

Momentum analysis

• If the momentum always observes gradient 𝑔
q v$ = −𝜖g ⇒ v% = −𝜖 &

'()
q 𝛼 = 0.9 ⇒ 𝑣% = 10 𝑣$

(Goodfellow 2016)

Parameter initialization strategy
• Break symmetry

q initialize each unit to compute a different function from all of the other
units.

• Set the biases for each unit to heuristically chosen constants (0 is good),
• initialize the weights randomly (Gaussian, truncate Gaussian or uniform)

q Initial weights that are too large may result in exploding values during
forward propagation or back-propagation, saturation or extreme
sensitivity.

q Initial weight that are reasonably large helps in breaking symmetry and
propagate information successfully
o For a layer with 𝑚 inputs, 𝑛 outputs: 𝑈(− '

*
, '
*

)

o Glorot and Bengio: 𝑈 − +
*,-

, +
*,-

• Another choice is to transfer the weights from another machine learning
task (e.g. unsupervised learning)

(Goodfellow 2016)

Algorithms with
adaptive learning rates

• If we believe that the directions of sensitivity are somewhat axis-aligned,
q it can make sense to use a separate learning rate for each parameter,
q and automatically adapt these learning rates throughout the course of

learning.
• Example: AdaGrad

(Goodfellow 2016)

RMSProp
(Root Mean Square Propagation)

• The RMSProp algorithm (Hinton, 2012) modifies AdaGrad to perform better in the non-convex
setting by changing the gradient accumulation into an exponentially weighted moving
average.

• RMSProp is currently one of the go-to optimization methods being employed routinely by
deep learning practitioners

(Goodfellow 2016)

RMSProp with
Nesterov momentum

• The difference between Nesterov momentum and standard momentum is
where the gradient is evaluated. With Nesterov momentum the gradient is
evaluated after the current velocity is applied (𝜃 + 𝛼𝑣).

(Goodfellow 2016)

Adam
(Adaptive Moments)

combination of
RMSProp and

momentum

(Goodfellow 2016)

Choosing the Right
Optimization Algorithm

• Currently, the most popular optimization algorithms
actively in use include SGD, SGD with momentum,
RMSProp, RMSProp with momentum, Adam, and
AdaDelta.

• The choice depends largely on the user’s familiarity
with the algorithm (for ease of hyperparameter
tuning)

(Goodfellow 2016)

Batch normalization
the problem

• Consider this very simple, yet deep, neural network
• 7𝑦 = 𝑥𝑤'𝑤.𝑤/…𝑤0 = 𝑓(𝒘)

q 𝒈 = 𝛻𝒘 7𝑦

q 𝒘 ← 𝒘− 𝜖𝒈

q 𝑓 𝒘 − 𝜖𝒈 ≈ 7𝑦 − 𝜖𝒈𝑻𝒈
q If 𝑔 = 1 and we want to decrease 7𝑦 by 0.1

o Take 𝜖 = $.'
&!&

q In reality:𝑓 𝒘 − 𝜖𝒈 = 𝑥 𝑤' − 𝜖𝑔' 𝑤. − 𝜖𝑔. … 𝑤0 − 𝜖𝑔0
q One of the second order terms: 𝜖.𝑔'𝑔.∏45/

0 𝑤4
o Might be negligible if ∏45/

0 𝑤4 is small
o Or might be exponentially large
o This makes it very hard to choose an appropriate learning rate

(Goodfellow 2016)

Batch normalization
the solution

• Provides an elegant way of reparametrizing almost any
deep network

• Can be applied to any input or hidden layer in the
network

• The goal is to isolate the updates across many layers
• Let 𝑯 be a minitbatch of activations of the layer to

normalize

𝑯) =
𝑯− 𝝁
𝝈

q 𝝁 contains the mean of each unit 𝝁 = #
*
∑(𝑯(,:

q 𝝈 contains the standard deviation of each unit 𝝈 =
𝛿 + #

*
∑(𝑯(,: − 𝜇(

$
𝛿 = 10(6

(Goodfellow 2016)

Batch normalization
interpretation

• Crucially we backpropagate through these operations
q They are part of the computation graph

• At test time, 𝝁 and 𝝈 may be replaced by running averages that
were collected during training time.
q This allows the model to be evaluated on a single example

• Revisiting 5𝑦 = 𝑥𝑤%𝑤&𝑤'…𝑤(= 𝑓 𝒘
q Now we can say: 5𝑦 = <ℎ((*%)𝑤((where <ℎ = ,*-

.
)

q The parameters at the lower layers have mostly no effect
• In non-linear deep networks,

q batch normalization acts to standardize only the mean and
variance of each unit in order to stabilize learning, (first and
second order statistics)

q but allows the relationships between units and the nonlinear
statistics of a single unit to change, (higher order statistics)

(Goodfellow 2016)

Batch normalization
expressive power

• To maintain the expressive power, we replace 𝑯 by:
𝜸𝑯/ + 𝜷

q We can represent the same family of functions of the input as
the old parametrization

q And have different learning dynamics in the same time

“Batch Normalization: Accelerating Deep
Network Training by Reducing Internal

Covariate Shift,” Ioffe and Szegedy 2015

2

Checkpoint
with

Mean 0,
Stddev 1

(Goodfellow 2016)

Coordinate descent

• We minimize 𝑓(𝑥) with respect to a single variable 𝑥4, then
minimize it with respect to another variable 𝑥5 and so on,

• Block coordinate descent refers to minimizing with respect
to a subset of the variables simultaneously

• Example: sparse coding
• Find 𝑊 that can linearly decode a matrix of activation values
𝐻 to reconstruct the training set 𝑋.
q we can divide the inputs to the training algorithm into two

sets:
o the dictionary parameters W
o and the code representations H .

(Goodfellow 2016)

Polyak averaging
• Polyak averaging consists of averaging together several points in the

trajectory through parameter space visited by an optimization algorithm.
• If 𝑡 iterations of gradient descent visit points 𝜃 ' , … , 𝜃(#), then the output of

the Polyak averaging algorithm is
D𝜃 # =

1
𝑡
E
4

D𝜃 4

• On some problem classes, such as gradient descent applied to convex
problems, this approach has strong convergence guarantees.

• When applied to neural networks, its justification is more heuristic, but it
performs well in practice.

• The basic idea is that the optimization algorithm may leap back and forth
across a valley several times without ever visiting a point near the bottom
of the valley.

• The average of all of the locations on either side should be close to the
bottom of the valley though.

• We can also use the running average:

(Goodfellow 2016)

Supervised Pretraining
• Pretraining algorithms break

supervised learning problems
into other simpler supervised
learning problems.

• Greedy algorithms break a
problem into many
components, then solve for
the optimal version of each
component in isolation

Another drawing of the
result, viewed as a
feedforward network.
To further improve the
optimization, we can
jointly fine-tune all the
layers, either only at
the end or at each
stage of this process

We start by training a
sufficiently shallow
architecture.

Another drawing of the
same architecture

We keep only the input-to-hidden
layer of the original network and
discard the hidden-to-output layer.
We send the output of the first
hidden layer as input to another
supervised single hidden layer
MLP that is trained with the same
objective as the first network was,
thus adding a second hidden layer.
This can be repeated for as many
layers as desired

Greedy supervised pretraining

(Goodfellow 2016)

Transfer learning

• Yosinski et al. (2014) pretrain a deep convolutional net
with 8 layers of weights on a set of tasks:
q a subset of the 1000 ImageNet object categories

• and then initialize a same-size network with:
q the first 𝑘 layers of the first net
q the upper layers initialized randomly

• All the layers of the second network are then jointly
trained to perform a different set of tasks
q another subset of the 1000 ImageNet object

categories,
q with fewer training examples than for the first set of

tasks.

(Goodfellow 2016)

Designing Models to Aid Optimization
• It is more important to choose a model family that is easy to optimize than to use

a powerful optimization algorithm
• Most of the advances in neural network learning over the past 30 years have

been obtained by changing the model family rather than changing the
optimization procedure
q Stochastic gradient descent with momentum, which was used to train neural

networks in the 1980s, remains in use in modern state of the art neural
network applications.

• Specifically, modern neural networks reflect a design choice to use:
q linear transformations between layers
q and activation functions that are differentiable almost everywhere and have

significant slope in large portions of their domain.
• Other ideas:

q Fitnets: one network is a teacher, the other is a student
q skip connections: mitigate the vanishing gradient problem
q GoogLeNet: adding extra copies of the output to the intermediate hidden

layers of the network, these extra copies are removed after the training

(Goodfellow 2016)

Continuation Methods
• Continuation methods are a family of strategies that can make optimization

easier by choosing initial points to ensure that local optimization spends
most of its time in well-behaved regions of space.

• The idea behind continuation methods is to construct a series of objective
functions over the same parameters. In order to minimize a cost function
𝐽(𝜃), we will construct new cost functions {𝐽($) , . . . , 𝐽(-)}.

• These cost functions are designed to be increasingly difficult, with 𝐽 $
being fairly easy to minimize, and 𝐽 - , the most difficult, being 𝐽(𝜃), the
true cost function motivating the entire process.

• When we say that 𝐽 4 is easier than 𝐽 4,' , we mean that it is well behaved
over more of 𝜃 space.

• Example:

q The intuition for this approach is that some non-convex functions
become approximately convex when blurred

(Goodfellow 2016)

Curriculum learning
• Curriculum learning is based on the idea of planning a learning process to

begin by learning simple concepts and progress to learning more complex
concepts that depend on these simpler concepts.

• Earlier 𝐽(4) are made easier by increasing the influence of simpler
examples
q either by assigning their contributions to the cost function larger

coefficients,
q or by sampling them more frequently

• the way humans teach:
q teachers start by showing easier and more prototypical examples
q and then help the learner refine the decision surface with the less

obvious cases.
• stochastic curriculum: a random mix of easy and difficult examples is

always presented to the learner, but where the average proportion of the
more difficult examples (for example sequences with longer-term
dependencies) is gradually increased.

(Goodfellow 2016)

Useful links

• Ian’s lecture on batch normalization (minutes 3:40 à 13)
q https://www.youtube.com/watch?v=Xogn6veSyxA

• Series: Optimization (A collection of four posts)
q https://blog.paperspace.com/intro-to-optimization-in-deep-

learning-gradient-descent/
q https://blog.paperspace.com/intro-to-optimization-momentum-

rmsprop-adam
q https://blog.paperspace.com/vanishing-gradients-activation-

function/
q https://blog.paperspace.com/busting-the-myths-about-batch-

normalization/
• ADAM's Story and Proof

q https://www.youtube.com/watch?v=n65pElMp6x8
q https://www.youtube.com/watch?v=q3zHYfaKg4k

https://www.youtube.com/watch%3Fv=Xogn6veSyxA
https://blog.paperspace.com/intro-to-optimization-in-deep-learning-gradient-descent/
https://blog.paperspace.com/intro-to-optimization-momentum-rmsprop-adam
https://blog.paperspace.com/vanishing-gradients-activation-function/
https://blog.paperspace.com/busting-the-myths-about-batch-normalization/
https://www.youtube.com/watch%3Fv=n65pElMp6x8
https://www.youtube.com/watch%3Fv=q3zHYfaKg4k

(Goodfellow 2016)

Optional
Approximate Second-Order Methods

• Newton’s Method
• Conjugate Gradients
• Non-linear conjugate gradients
• Broyden–Fletcher–Goldfarb–Shanno (BFGS)

algorithm

(Goodfellow 2016)

Newton’s method

• For a locally quadratic function (with positive definite 𝑯), by
rescaling the gradient by 𝐻67, Newton’s method jumps
directly to the minimum.

• If the objective function is convex but not quadratic (there
are higher-order terms), this update can be iterated

(Goodfellow 2016)

Newton’s method algorithm

If the eigenvalues of the Hessian are not
all positive, for example, near a saddle point,
then Newton’s method can actually
cause updates to move in the wrong direction.
This situation can be avoided
by regularizing the Hessian.

(Goodfellow 2016)

The method of steepest descent

(Goodfellow 2016)

Method of conjugate gradients

• In the method of conjugate gradients, we seek to
find a search direction that is conjugate to the
previous line search direction, i.e. it will not undo
progress made in that direction.

• At training iteration 𝑡, the next search direction 𝒅#
takes the form:

• Two directions, 𝒅# and 𝒅#$% , are defined as
conjugate if 𝒅#𝑯𝒅#$% = 0

(Goodfellow 2016)

Conjugate gradient algorithm

(Goodfellow 2016)

Nonlinear conjugate gradients

• The nonlinear conjugate gradients algorithm includes occasional
resets where the method of conjugate gradients is restarted with
line search along the unaltered gradient.

• Practitioners report reasonable results in applications of the
nonlinear conjugate gradients algorithm to training neural
networks,
q though it is often beneficial to initialize the optimization with a

few iterations of stochastic gradient descent before
commencing nonlinear conjugate gradients.

q Also, while the (nonlinear) conjugate gradients algorithm has
traditionally been cast as a batch method, minibatch versions
have been used successfully for the training of neural networks

(Goodfellow 2016)

BFGS
• The Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm attempts to

bring some of the advantages of Newton’s method without the
computational burden.
q In that respect, BFGS is similar to the conjugate gradient method.

• However, BFGS takes a more direct approach to the approximation of
Newton’s update. Recall that Newton’s update is given by:

• The primary computational difficulty in applying Newton’s update is the
calculation of the inverse Hessian 𝐻(' (which is 𝑂 𝑛/).
q The approach adopted by quasi-Newton methods (of which the BFGS

algorithm is the most prominent) is to approximate the inverse with a
matrix 𝑀# that is iteratively refined by low rank updates to become a
better approximation of 𝐻('.

• BFGS algorithm must store the inverse Hessian matrix, 𝑀, that requires
𝑂(𝑛.)memory, making BFGS impractical for most modern deep learning
models that typically have millions of parameters.

(Goodfellow 2016)

