
Convolutional Networks
Lecture slides for Chapter 9 of Deep Learning

Ian Goodfellow
2016-09-12

Adapted by m.n. for CMPS 392



(Goodfellow 2016)

Convolutional networks

• Specialized kind of neural network for processing 
data that has a known, grid-like topology. 

• Examples include 
q time-series data, which can be thought of as a 1D 

grid taking samples at regular time intervals, 
q and image data, which can be thought of as a 2D 

grid of pixels.
• Convolutional networks are simply neural networks 

that use convolution in place of general matrix 
multiplication in at least one of their layers.



(Goodfellow 2016)

Key Idea

• Replace matrix multiplication in neural nets with 
convolution

• Everything else stays the same
q Maximum likelihood
q Back-propagation
q etc.



(Goodfellow 2016)

Convolution

• Convolution	is	just	a	weighted	average:	
q 𝑠 𝑡 = ∫𝑥 𝑎 𝑤(𝑡 − 𝑎)
q 𝑤 𝑡 is a probability density function. 
q 𝑤 = 0 for all negative arguments 

• Denoted 𝑠 𝑡 = 𝑥 ∗ 𝑤 𝑡
q 𝑥 is the input 
q 𝑤 is the kernel 
q The output is the feature map

• Discrete convolution 

𝑠 𝑡 = 𝑥 ∗ 𝑤 𝑡 = @
!"#$

%$

𝑥 𝑎 𝑤 𝑡 − 𝑎



(Goodfellow 2016)

2D convolution

𝑆 𝑖, 𝑗 = 𝐼 ∗ 𝐾 𝑖, 𝑗 =*
!

*
"

𝐼 𝑚, 𝑛 𝐾(𝑖 − 𝑚, 𝑗 − 𝑛)

q 𝑚 = 𝑖, 𝑖 − 1, 𝑖 − 2,…

q 𝑛 = 𝑖, 𝑖 − 1, 𝑖 − 2,…

q 𝐼 𝑖, 𝑗 𝐾 0,0 + 𝐼 𝑖, 𝑗 − 1 𝐾 0,1 + ⋯
• Convolution is commutative: 

𝑆 𝑖, 𝑗 = 𝐾 ∗ 𝐼 𝑖, 𝑗 =*
!

*
"

𝐾 𝑚, 𝑛 𝐼(𝑖 − 𝑚, 𝑗 − 𝑛)

q 𝑚 = 0, 1, 2, …

q 𝑛 = 0, 1 , 2, …
• Cross correlation: (what we will really use / no kernel flipping)

𝑆 𝑖, 𝑗 = 𝐼 ∗ 𝐾 𝑖, 𝑗 =*
!

*
"

𝐾 𝑚, 𝑛 𝐼(𝑖 + 𝑚, 𝑗 + 𝑛)

• Many machine learning libraries implement cross-correlation but call it 
convolution.



(Goodfellow 2016)

2D ”valid” Convolution

Figure 9.1



(Goodfellow 2016)

Motivation 

• Scale up neural networks to process very large images / video sequences

q Sparse connections

o The kernel is smaller than the input: 𝑂 𝑚×𝑛 → 𝑂 𝑘×𝑛

q Parameter sharing

o The kernel is used at every position of the input 

q Equivariant representations

o Automatically generalize across spatial translations of inputs

o 𝑓 is equivariant to 𝑔 if 𝑓 𝑔 𝑥 = 𝑔(𝑓 𝑥 )

q Works with inputs of variable size

• Applicable to any input that is laid out on a grid (1-D, 2-D, 3-D, …)



(Goodfellow 2016)

Sparse Connectivity (viewed from below)

Sparse
connections
due to small
convolution

kernel

Dense
connections

Figure 9.2



(Goodfellow 2016)

Sparse Connectivity (viewed from above)

Sparse
connections
due to small
convolution

kernel

Dense
connections

Figure 9.3

𝑥#, 𝑥$, 𝑥% are the 
receptive field of 𝑠%



(Goodfellow 2016)

Growing Receptive Fields

Figure 9.4

Even though direct connections in a convolutional 
net are very sparse, units in the deeper layers can 
be indirectly connected to all or most of the  xinput
image.



(Goodfellow 2016)

Parameter Sharing

Convolution 
shares the same 

parameters 
across all spatial 

locations

Traditional 
matrix 

multiplication 
does not share 
any parameters

Figure 9.5



(Goodfellow 2016)

Edge Detection by Convolution

-1 -1

Input

Kernel
Output

Figure 9.6

320×280

319×280



(Goodfellow 2016)

Efficiency of Convolution
Input size: 320 by 280
Kernel size: 2 by 1
Output size: 319 by 280

Convolution Dense matrix Sparse matrix

Stored floats 2 319*280*320*280 
> 8e9

2*319*280 = 
178,640

Float muls or 
adds

319*280*3 = 
267,960 > 16e9

Same as 
convolution 
(267,960)



(Goodfellow 2016)

Pooling 

• A typical layer of a convolutional network consists of three 
stages
q In the first stage, the layer performs several convolutions

in parallel to produce a set of linear activations. 
q In the second stage, each linear activation is run through 

a nonlinear activation function, such as the rectified linear 
activation function. This stage is sometimes called the 
detector stage. 

q In the third stage, we use a pooling function to modify the 
output of the layer further.

• A pooling function replaces the output of the net at a certain 
location with a summary statistic of the nearby outputs:
q The max pooling operation reports the maximum output 

within a rectangular neighborhood
q Average pooling, weighted average pooling, L2 norm, etc. 



(Goodfellow 2016)

Convolutional Network 
Components

Figure 9.7



(Goodfellow 2016)

Why pooling?
• Invariance:

q Pooling helps to make the representation become approximately 
invariant to small translations of the input. 

q Invariance to translation means that if we translate the input by a small 
amount, the values of most of the pooled outputs do not change. 

q Invariance to local translation can be a very useful property if we care 
more about whether some feature is present than exactly where it is.

q The use of pooling can be viewed as adding an infinitely strong prior 
that the function the layer learns must be invariant to small translations.

• Efficiency: 
q Pooling units summarize detector units by reporting summary statistics 

for pooling regions spaced k pixels apart rather than 1 pixel apart. 
q This improves the computational efficiency of the network 
q improved statistical efficiency and reduced memory requirements for 

storing the parameters.



(Goodfellow 2016)

Max Pooling and Invariance to 
Translation

Figure 9.8

Stride = 1
Width = 3



(Goodfellow 2016)

Cross-Channel Pooling and Invariance to 
Learned Transformations

Figure 9.9



(Goodfellow 2016)

Pooling with Downsampling

Figure 9.10

Stride = 2
Width = 3



(Goodfellow 2016)

Example Classification 
Architectures

Figure 9.11The specific strides and 
depths used in this 
figure are not advisable 
for real use



(Goodfellow 2016)

Variants of the convolution function
• We use many convolutions in parallel (multi-channel)
• The input is a 4-d tensor (batch, r, g, b). Let’s ignore the batch index for the 

moment:

𝑍&,(,) = *
*,!,"

𝑉*,(+!,#,)+",#𝐾&,*,!,"

q 𝑖: output channel
q 𝑙: input channel (R,G,B)
q 𝑚, 𝑛: offsets (row, column) = 1,2,3, …
q 𝑗, 𝑘: row, column

• Convolution with stride: 

𝑍&,(,) = 𝑐 𝐾, 𝑉, 𝑠 = *
*,!,"

𝑉*, (,# ×.+!, ),# ×.+"𝐾&,*,!,"

Stride Output (row, column) Input (row, column)
𝑠 = 1 0,1,2, … 0,1,2, …
𝑠 = 2 0,1,2, … 0,2,4, …
𝑠 = 3 0,1,2, … 0,3,6, …

…



(Goodfellow 2016)

Convolution with Stride

Figure 9.12

Stride 
of 2 



(Goodfellow 2016)

Zero padding

• Valid: no zero-padding, the convolution kernel is 
only allowed to visit positions where the kernel is 
contained entirely within the image.
q input 𝑚, kernel 𝑘 ⇒ output 𝑚 − 𝑘 + 1

• Same: pad with enough zeroes to preserve the 
input dimension 
q input 𝑚 ⇒ output 𝑚

• Full: every input contributes to equal number of 
outputs
q input 𝑚 ⇒ output 𝑚 + 𝑘 − 1



(Goodfellow 2016)

Zero Padding Controls Size

Figure 9.13

With zero
Padding (same) 

Without zero
Padding (valid)



(Goodfellow 2016)

Kinds of Connectivity

Figure 9.14

Local connection:
like convolution,
but no sharing

Convolution

Fully connected

𝑍!,#,$ = #
%,&,'

𝑉%,#(&)*,$(')*𝐾!,#,$,%,&,'

𝑍!,#,$ = #
%,&,'

𝑉%,#(&)*,$(')*𝐾!,%,&,'



(Goodfellow 2016)

Partial Connectivity Between Channels

Figure 9.15

A convolutional network 
with the first two output 
channels connected to 
only the first two input 
channels, and the 
second two output 
channels connected to 
only the second two 
input channels.



(Goodfellow 2016)

Tiled convolution

Figure 9.16

Local connection
(no sharing)

Convolution
(one group shared

everywhere)

Tiled convolution
(cycle between

groups of shared
parameters)

𝑍!,#,$ = #
%,&,'

𝑉%,#(&)*,$(')*𝐾!,%,&,', #%,(*, $%,(*



(Goodfellow 2016)

Three Operations

1. Convolution: (linear) like matrix multiplication

q Take an input, produce an output (hidden layer)

2. “Deconvolution”: like multiplication by transpose of a matrix

q Used to back-propagate error from output to input

q Reconstruction in autoencoder 

3. Weight gradient computation

q Used to backpropagate error from output to weights

q Accounts for the parameter sharing



(Goodfellow 2016)

Gradient computation
• Image/input 𝑉, kernel 𝐾, conv. output 𝑍 = 𝑐 𝐾, 𝑉, 𝑠 , Cost function 𝐽 𝑉, 𝐾

𝑍!,#,$ = 𝑐 𝐾, 𝑉, 𝑠 = )
%,&,'

𝑉%, #() ×+,&, $() ×+,'𝐾!,%,&,'

• We receive 𝐺, 𝐺!,#,$ =
-.(0,1)
-3!,#,$

q Compute the gradient wrt weights of the kernel: 

𝑔 𝐺, 𝑉, 𝑠 !,%,&,' =
𝜕𝐽(𝑉, 𝐾)
𝜕𝐾!,%,&,'

=)
#,$

𝜕𝐽(𝑉, 𝐾)
𝜕𝑧!,#,$

𝜕𝑧!,#,$
𝜕𝐾!,%,&,'

=)
#,$

𝐺!,#,$𝑉%, #() ×+,&, $() ×+,'

q Compute the gradient wrt 𝑉:

ℎ 𝐾, 𝐺, 𝑠 %,4,5 =
𝜕𝐽(𝑉, 𝐾)
𝜕𝑉%,4,5

=)
!

)
#,& +.7.

#() ×+,&84

)
$,' +.7.

$() ×+,'85

𝜕𝐽(𝑉, 𝐾)
𝜕𝑧!,#,$

𝜕𝑧!,#,$
𝜕𝑉%,4,5

=)
!

)
#,& +.7.

#() ×+,&84

)
$,' +.7.

$() ×+,'85

𝐺!,#,$𝐾!,%,&,'



(Goodfellow 2016)

Deconvolution 

• More generally, the function ℎ 𝐾,𝐻, 𝑠 is called 
deconvolution

• Can be used for reconstruction: 𝑅 = ℎ 𝐾,𝐻, 𝑠 in an 
autoencoder (similar to PCA) 

• To train:
q Receive a gradient 𝐸 (w.r.t. 𝑅)
q Compute the gradient w.r.t. 𝐾: 

o This is given by 𝑔(𝐻, 𝐸, 𝑠)
q Compute the gradient wrt 𝐻:

o This is given by 𝑐(𝐾, 𝐸, 𝑠)



(Goodfellow 2016)

Data types
Single channel Multichannel

1-D

Audio waveform (amplitude over time)
Channel: Amplitude

Dimension: T

Skeleton animation data
Each channel in the data represents the angle
about one axis of one joint of a character’s 
skeleton.

Channels: Angles
Dimesion: T

2-D

Audio data that has been transformed with 
a Fourier transform.
• Rows correpsond to frequencies. 

(equivariance to a shift in octaves)
• Columns correspond to different points 

in time. (equivariance to shifts in time)

Channel: Amplitude
Dimensions: F,T

Color Image Data
Channels: R,G,B
Dimensions: X,Y

3-D

Volumetric data such as provening from 
medical imaging technology

Channel: GrayScale
Dimensions: X,Y,Z

Color video data 
Channels: R,G,B
Dimesions: X,Y,T



(Goodfellow 2016)

Structures output 
Recurrent Pixel Labeling

Figure 9.17



(Goodfellow 2016)

Major Architectures

• Spatial Transducer Net: input size scales with output size, 
all layers are convolutional

• All Convolutional Net: no pooling layers, just use strided 
convolution to shrink representation size

• Inception: complicated architecture designed to achieve 
high accuracy with low computational cost

• ResNet: blocks of layers with same spatial size, with each 
layer’s output added to the same buffer that is repeatedly 
updated. Very many updates = very deep net, but without 
vanishing gradient.



(Goodfellow 2016)

Watch

• https://www.youtube.com/watch?v=Xogn6veSyxA

https://www.youtube.com/watch%3Fv=Xogn6veSyxA

