
Sequence Modeling:
Recurrent and Recursive

Nets
Lecture slides for Chapter 10 of Deep Learning

www.deeplearningbook.org
Ian Goodfellow

2016-09-27
Adapted by m.n. for CMPS 392

(Goodfellow 2016)

RNN

• RNNs are a family of neural networks for processing sequential
data

• Recurrent networks can scale to much longer sequences than
would be practical for networks without sequence-based
specialization.

• Most recurrent networks can also process sequences of variable
length.

• Based on parameter sharing
q If we had separate parameters for each value of the time index,

o we could not generalize to sequence lengths not seen during
training,

o nor share statistical strength across different sequence
lengths,

o and across different positions in time.

(Goodfellow 2016)

Example

• Consider the two sentences “I went to Nepal in
2009” and “In 2009, I went to Nepal.”

• How a machine learning can extract the year
information?
q A traditional fully connected feedforward network

would have separate parameters for each input
feature,

q so it would need to learn all of the rules of the
language separately at each position in the
sentence.

• By comparison, a recurrent neural network shares
the same weights across several time steps.

(Goodfellow 2016)

RNN vs. 1D convolutional

• The output of convolution is a sequence where
each member of the output is a function of a small
number of neighboring members of the input.

• Recurrent networks share parameters in a different
way.
q Each member of the output is a function of the

previous members of the output
q Each member of the output is produced using the

same update rule applied to the previous outputs.
q This recurrent formulation results in the sharing of

parameters through a very deep computational
graph.

(Goodfellow 2016)

Classical Dynamical Systems

Figure 10.1

𝒔 ! = 𝑓 𝒔(!#$); 𝜽
𝒔 & = 𝑓 𝒔('); 𝜽 = 𝑓 𝑓 𝒔($); 𝜽 ; 𝜽

𝑠 ! : state of
the system

Other example: consider a dynamical
system driven by an external signal
𝒙(𝒕):

𝒔 𝒕 = 𝑓(𝒔 𝒕#𝟏 , 𝒙(𝒕); 𝜽),

(Goodfellow 2016)

Unfolding Computation Graphs

Figure 10.2

𝒉 𝒕 = 𝑓 𝒉 𝒕#𝟏 , 𝒙 𝒕 ; 𝜽
= 𝑔(!) 𝒙 𝒕 , 𝒙 𝒕#𝟏 , 𝒙 𝒕#𝟐 , . . . , 𝒙 𝟐 , 𝒙 𝟏

The network typically learns to
use 𝒉(") as a kind of lossy
summary of the task-relevant
aspects of the past sequence of
inputs up to 𝑡

This summary is necessarily lossy,
since it maps an arbitrary length
sequence 𝒙𝒕 , 𝒙𝒕%𝟏 , 𝒙𝒕%𝟐, . . . , 𝒙𝟐 , 𝒙𝟏 to
a fixed length vector 𝒉"

(Goodfellow 2016)

Recurrent Hidden Units

𝐿 𝒙 𝟏 , 𝒙 𝟐 , . . . , 𝒙 𝝉 , 𝑦 $, 𝑦 % , . . . , 𝑦 &

='
'

𝐿 𝑡 = −'
'

log 𝑝()*+,(𝑦 ' |{𝒙 𝟏 , 𝒙 𝟐 , . . . , 𝒙 𝒕 }

for 𝑡 = 1,… , 𝜏:
𝑎 ' = 𝑏 +𝑊ℎ '.$ + 𝑈𝑥(')

ℎ ' = tanh 𝑎 '

𝑜 𝑡 = 𝑐 + 𝑉 ℎ 𝑡
D𝑦 ' = softmax 𝑜 '

𝑈: input-to-hidden
𝑉: hidden-to-output
𝑊: hidden-to-hidden

back-propagation through time
or BPTT

(Goodfellow 2016)

Recurrence through only the Output
(less powerful, easier to train)

Figure 10.4

for 𝑡 = 1,… , 𝜏:
𝑎 " = 𝑏 +𝑊𝑜 "%(+ 𝑈𝑥(")

ℎ " = tanh 𝑎 "

𝑜 𝑡 = 𝑐 + 𝑉 ℎ 𝑡
9𝑦 " = softmax 𝑜 "

(Goodfellow 2016)

Sequence Input, Single Output

Figure 10.5

for 𝑡 = 1,… , 𝜏:
𝑎 " = 𝑏 +𝑊ℎ "%(+ 𝑈𝑥(")

ℎ " = tanh 𝑎 "

𝑜 𝜏 = 𝑐 + 𝑉 ℎ 𝜏
9𝑦) = softmax 𝑜)

(Goodfellow 2016)

Teacher Forcing

Figure 10.6

Teacher forcing is a procedure in
which during training the model
receives the ground truth output 𝑦 "

as input at time 𝑡 + 1.

(Goodfellow 2016)

Computing the gradient

• 𝐿 " = −∑𝑝+ log 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝑜+
" = −∑𝑝+ log 9𝑦+

"

•
,- !

,."
! = − ,

,."
! ∑/0+ 𝑝/ log 9𝑦/

" + 𝑝+ log 9𝑦+
"

q
,

,."
! log 9𝑦+

" = 1 − 9𝑦+
"

q
,

,."
! ∑/0+ 𝑝/ log 9𝑦/

" = ,
,."

! ∑/0+ 𝑝/𝑜/
" + ∑/0+ 𝑝/ log∑1 exp 𝑜1

" =

∑/0+ 𝑝/ 9𝑦+
" = 9𝑦+

" ∑/0+ 𝑝/ = 9𝑦+
" 1 − 𝑝+

•
,- !

,."
! = −𝑝+ 1 − 9𝑦+

" − 1 − 𝑝+ 9𝑦+
" = −𝑝+ + 9𝑦+

"

•
,- !

,."
! = 9𝑦+

(") − 𝟏+,3(!)

∇𝒐 𝒕 𝐿 " = M𝒚 𝒕 − 𝟏3(!)

(Goodfellow 2016)

Computing the gradient

• ∇𝒉 𝝉 𝐿 = 𝑉2∇𝒐 𝝉 𝐿

• ∇𝒂 𝝉 𝐿 = 5𝒉 𝝉

5𝒂 𝝉

2
∇𝒉 𝝉 𝐿 = 𝑑𝑖𝑎𝑔 1 − ℎ & " ∇𝒉 𝝉 𝐿

• ∇𝒉 𝝉#𝟏 𝐿 = 𝑊2∇𝒂 𝝉 𝐿 + 𝑉2∇𝒐 𝝉#𝟏 𝐿
∇𝒉 𝝉#𝟏 𝐿 = 𝑊2𝑑𝑖𝑎𝑔 1 − ℎ & " ∇𝒉 𝝉 𝐿 + 𝑉2∇𝒐 𝝉#𝟏 𝐿

• Valid for any 𝑡 < 𝜏
∇𝒉 𝒕 𝐿 = 𝑊2𝑑𝑖𝑎𝑔 1 − ℎ '6$ " ∇𝒉 𝒕&𝟏 𝐿 + 𝑉2∇𝒐 𝒕 𝐿

for 𝑡 = 1,… , 𝜏:
𝑎 ! = 𝑏 +𝑊ℎ !"# + 𝑈𝑥(!)

ℎ ! = tanh 𝑎 !

𝑜 ! = 𝑐 + 𝑉 ℎ !

L𝑦 ! = softmax 𝑜 !

(Goodfellow 2016)

Gradients on the parameter nodes

• ∇!𝐿 = ∑" ∇#(")𝐿

• ∇$𝐿 = ∑" ∇# " 𝐿 ℎ " $

• ∇%𝐿 = ∑" ∇&(")𝐿 = ∑" 𝑑𝑖𝑎𝑔 1 − ℎ " % ∇𝒉 𝒕 𝐿

• ∇(𝐿 = ∑" ∇& " 𝐿 ℎ ")* $ = ∑" 𝑑𝑖𝑎𝑔 1 − ℎ " % ∇𝒉 𝒕 𝐿 ℎ ")* $

• ∇+𝐿 = ∑" ∇& " 𝐿 𝑥 " $ = ∑" 𝑑𝑖𝑎𝑔 1 − ℎ " % ∇𝒉 𝒕 𝐿 𝑥 " $

for 𝑡 = 1,… , 𝜏:
𝑎 ! = 𝑏 +𝑊ℎ !"# + 𝑈𝑥(!)

ℎ ! = tanh 𝑎 !

𝑜 ! = 𝑐 + 𝑉 ℎ !

L𝑦 ! = softmax 𝑜 !

(Goodfellow 2016)

Fully Connected Graphical Model

Figure 10.7

One way to interpret an
RNN as a graphical
model is to view the RNN
as defining a graphical
model whose structure is
the complete graph:

Here we consider a sequence of random
variables 𝑦(") with no inputs 𝑥.

(Goodfellow 2016)

RNN Graphical Model

Figure 10.8

(The conditional distributions for the
hidden units are deterministic)

Incorporating the ℎ(') nodes
in the graphical model
decouples the past and the
future, acting as an
intermediate quantity
between them.

RNNs obtain the same
full connectivity but
efficient parametrization

(Goodfellow 2016)

RNN assumptions

• The price recurrent networks pay for their reduced number of
parameters is that optimizing the parameters may be difficult.

• The parameter sharing used in recurrent networks relies on the
assumption that the same parameters can be used for different
time steps.

• The assumption is that the conditional probability distribution over
the variables at time 𝑡 + 1 given the variables at time 𝑡 is stationary

• The RNN must have some mechanism for determining the length
of the sequence:
q A special symbol corresponding to the end of a sequence
q an extra Bernoulli output to the model that represents the

decision to either continue generation or halt generation at each
time step.

q add an extra output to the model that predicts the sequence
length 𝜏 itself, or 𝜏 − 𝑡, the number of remaining steps.

(Goodfellow 2016)

Vector to Sequence

Figure 10.9

• An RNN that maps a fixed-
length vector 𝑥 into a distribution
over sequences 𝑌.

• This RNN is appropriate for
tasks such as image captioning,
where a single image is used as
input to a model that then
produces a sequence of words
describing the image.

• Each element 𝑦(") of the
observed output sequence
serves both as input (for the
current time step) and, during
training, as target (for the
previous time step).

(Goodfellow 2016)

Hidden and Output Recurrence

Figure 10.10
The output values are not forced to be conditionally

independent in this model.

• A conditional recurrent
neural network mapping a
variable-length sequence of
𝑥 values into a distribution
over sequences of 𝑦 values
of the same length.

• This RNN contains
connections from the
previous output to the
current state.

• These connections allow
this RNN to model an
arbitrary distribution over
sequences of 𝑦 given
sequences of 𝑥 of the same
length.

(Goodfellow 2016)

Bidirectional RNN

• We want to output a prediction of 𝑦(R) which may depend
on the whole input sequence.
q For example, in speech recognition, the correct

interpretation of the current sound as a phoneme may
depend on the next few phonemes because of co-
articulation and potentially may even depend on the
next few words because of the linguistic
dependencies between nearby words:
o if there are two interpretations of the current word

that are both acoustically plausible, we may have to
look far into the future (and the past) to
disambiguate them.

q This is also true of handwriting recognition and many
other sequence-to-sequence learning tasks

(Goodfellow 2016)

Bidirectional RNN

Figure 10.11

• Computation of a typical bidirectional
recurrent neural network, meant to
learn to map input sequences 𝑥 to
target sequences 𝑦, with loss 𝐿(') at
each step 𝑡.

• The ℎ recurrence propagates
information forward in time (towards
the right) while the 𝑔 recurrence
propagates information backward in
time (towards the left).

• Thus at each point 𝑡, the output units
𝑜(') can benefit from a relevant
summary of the past in its ℎ(') input
and from a relevant summary of the
future in its 𝑔(') input.

(Goodfellow 2016)

Sequence to Sequence Architecture

Figure 10.12

• RNN can be trained to map
an input sequence to an
output sequence which is
not necessarily of the same
length.

• This comes up in many
applications, such as
speech recognition,
machine translation or
question answering.

(Goodfellow 2016)

Deep RNNs
A recurrent neural network
can be made deep in many
ways.
• (a) The hidden recurrent

state can be broken down
into groups organized
hierarchically.

• (b) Deeper computation
(e.g., an MLP) can be
introduced in the input-to-
hidden, hidden-to-hidden
and hidden-to-output parts.
This may lengthen the
shortest path linking
different time steps.

• (c)The path-lengthening
effect can be mitigated by
introducing skip
connections.

(Goodfellow 2016)

The challenge of long-term dependencies
Repeated Function Composition

• The x-axis is the coordinate of the initial state along a
random direction in the 100-dimensional space.

• The y-axis is a linear projection of a 100-dimensional
hidden state down to a single dimension

• We can thus view this plot as a linear cross-section of a
high-dimensional function.

• The plots show the function after each time step, or
equivalently, after each number of times the transition
function has been composed.

• When composing many
nonlinear functions (like
the linear-tanh layer
shown here), the result
is highly nonlinear.

• the use of a squashing
nonlinearity such as
tanh can cause the
recurrent dynamics to
become bounded.

ℎ(") = 𝑊5ℎ("%()
ℎ " = 𝑊" 5ℎ(6)
𝑊 = 𝑄Λ𝑄5

ℎ " = 𝑄5Λ5𝑄ℎ 6

(Goodfellow 2016)

Gated RNNs

• The most effective sequence models used in
practical applications are called gated RNNs.

• These include the long short-term memory (LSTM)
and networks based on the gated recurrent unit
(GRU)
q Create paths through time that have derivatives

that neither vanish nor explode
q Accumulate information such as evidence for a

particular feature or category,
q Forget the old state and start over.

(Goodfellow 2016)

LSTM

Figure 10.16

(1) An input feature
is computed with a
regular artificial
neuron unit

(2) Its value can be
accumulated into the
state if the sigmoidal
input gate allows it.

(3) The state unit has a
linear self-loop whose
weight is controlled by
the forget gate.

(4) The output of the cell can
be shut off by the output
gate.

All the gating units
have a sigmoid
nonlinearity, while
the input unit can
have any
squashing
nonlinearity

(5) The state unit can
also be used as an
extra input to the gating
units.

“LSTM cells” have an internal
recurrence (a self-loop), in
addition to the outer recurrence
of the RNN

(Goodfellow 2016)

LSTM

External	input	gate,	Cell	i,	time	step	t:

𝑔&
(!) = 𝜎 𝑏&

' +_
(

𝑈&,(
' 𝑥(

! +_
(

𝑊&,(
' ℎ(

!"#

State,	Cell	i,	time	step	t:

𝑠&
! = 𝑓&

! 𝑠&
!"# + 𝑔&

! 𝜎 𝑏& +_
(

𝑈&,(𝑥(
! +_

(

𝑊&,(ℎ(
!"#

Forget	gate,	Cell	i,	time	step	t:

𝑓&
! = 𝜎 𝑏&

* +_
(

𝑈&,(
* 𝑥(

! +_
(

𝑊&,(
* ℎ(

!"#

Output,	cell	i,	time	step	t:
ℎ&
(!) = tanh 𝑠&

! 𝑞&
(!)

Output	gate,	cell	I,	time	step	t:	

𝑞&
! = 𝜎 𝑏&+ +_

(

𝑈&,(+ 𝑥(
! +_

(

𝑊&,(
+ ℎ(

!"#

𝒙 " 𝒉 "%(𝒙 " 𝒉 "%(𝒙 " 𝒉 "%(𝒙 " 𝒉 "%(

ℎ+
"

𝑞+
"𝑓+

"𝑔+
"

𝑠+
"

(Goodfellow 2016)

LSTM networks

• LSTM networks have been shown to learn
long−term dependencies more easily than the
simple recurrent architectures,
q first on artificial data sets designed for testing the

ability to learn long−term dependencies
q then on challenging sequence processing tasks

where state−of−the−art performance was
obtained

(Goodfellow 2016)

GRU

• The main difference with the LSTM is that a single gating unit
simultaneously controls the forgetting factor and the decision to
update the state unit.

ℎ'
(= 𝑢'

()* ℎ'
()* + 1 − 𝑢'

()* 𝜎 𝑏' +3
+

𝑈',+𝑥+
()* +3

+

𝑊',+𝑟+
()* ℎ+

()*

• Update gate:

𝑢h
' = 𝜎 𝑏hi +'

j

𝑈h,ji 𝑥j
' +'

j

𝑊h,j
i ℎj

'

• Reset gate:

𝑟h
' = 𝜎 𝑏hk +'

j

𝑈h,jk 𝑥j
' +'

j

𝑊h,j
k ℎj

'

(Goodfellow 2016)

Watch

• https://www.youtube.com/watch?v=ZVN14xYm7JA
&feature=youtu.be

https://www.youtube.com/watch%3Fv=ZVN14xYm7JA&feature=youtu.be

(Goodfellow 2016)

Farewell

This lecture concludes our CMPS 392

• But it does not conclude your journey with deep
learning.

Congratulations

