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RNN

• RNNs are a family of neural networks for processing sequential 
data

• Recurrent networks can scale to much longer sequences than 
would be practical for networks without sequence-based 
specialization. 

• Most recurrent networks can also process sequences of variable 
length.

• Based on parameter sharing 
q If we had separate parameters for each value of the time index, 

o we could not generalize to sequence lengths not seen during 
training, 

o nor share statistical strength across different sequence 
lengths, 

o and across different positions in time.
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Example 

• Consider the two sentences “I went to Nepal in 
2009” and “In 2009, I went to Nepal.” 

• How a machine learning can extract the year 
information? 
q A traditional fully connected feedforward network 

would have separate parameters for each input 
feature, 

q so it would need to learn all of the rules of the 
language separately at each position in the 
sentence.

• By comparison, a recurrent neural network shares 
the same weights across several time steps.
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RNN vs. 1D convolutional

• The output of convolution is a sequence where 
each member of the output is a function of a small 
number of neighboring members of the input.

• Recurrent networks share parameters in a different 
way.
q Each member of the output is a function of the 

previous members of the output
q Each member of the output is produced using the 

same update rule applied to the previous outputs.
q This recurrent formulation results in the sharing of 

parameters through a very deep computational 
graph. 
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Classical Dynamical Systems

Figure 10.1

𝒔 ! = 𝑓 𝒔(!#$); 𝜽
𝒔 & = 𝑓 𝒔('); 𝜽 = 𝑓 𝑓 𝒔($); 𝜽 ; 𝜽

𝑠 ! : state of 
the system 

Other example: consider a dynamical 
system driven by an external signal 
𝒙(𝒕):

𝒔 𝒕 = 𝑓(𝒔 𝒕#𝟏 , 𝒙(𝒕); 𝜽),
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Unfolding Computation Graphs

Figure 10.2

𝒉 𝒕 = 𝑓 𝒉 𝒕#𝟏 , 𝒙 𝒕 ; 𝜽
= 𝑔(!) 𝒙 𝒕 , 𝒙 𝒕#𝟏 , 𝒙 𝒕#𝟐 , . . . , 𝒙 𝟐 , 𝒙 𝟏

The network typically learns to 
use 𝒉(") as a kind of lossy 
summary of the task-relevant 
aspects of the past sequence of 
inputs up to 𝑡

This summary is necessarily lossy, 
since it maps an arbitrary length 
sequence 𝒙𝒕 , 𝒙𝒕%𝟏 , 𝒙𝒕%𝟐, . . . , 𝒙𝟐 , 𝒙𝟏 to 
a fixed length vector 𝒉"
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Recurrent Hidden Units

𝐿 𝒙 𝟏 , 𝒙 𝟐 , . . . , 𝒙 𝝉 , 𝑦 $ , 𝑦 % , . . . , 𝑦 &

='
'

𝐿 𝑡 = −'
'

log 𝑝()*+,(𝑦 ' |{𝒙 𝟏 , 𝒙 𝟐 , . . . , 𝒙 𝒕 }

for 𝑡 = 1,… , 𝜏:
𝑎 ' = 𝑏 +𝑊ℎ '.$ + 𝑈𝑥(')

ℎ ' = tanh 𝑎 '

𝑜 𝑡 = 𝑐 + 𝑉 ℎ 𝑡
D𝑦 ' = softmax 𝑜 '

𝑈: input-to-hidden
𝑉: hidden-to-output
𝑊: hidden-to-hidden

back-propagation through time
or BPTT
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Recurrence through only the Output
(less powerful, easier to train)

Figure 10.4

for 𝑡 = 1,… , 𝜏:
𝑎 " = 𝑏 +𝑊𝑜 "%( + 𝑈𝑥(")

ℎ " = tanh 𝑎 "

𝑜 𝑡 = 𝑐 + 𝑉 ℎ 𝑡
9𝑦 " = softmax 𝑜 "
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Sequence Input, Single Output

Figure 10.5

for 𝑡 = 1,… , 𝜏:
𝑎 " = 𝑏 +𝑊ℎ "%( + 𝑈𝑥(")

ℎ " = tanh 𝑎 "

𝑜 𝜏 = 𝑐 + 𝑉 ℎ 𝜏
9𝑦 ) = softmax 𝑜 )
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Teacher Forcing

Figure 10.6

Teacher forcing is a procedure in 
which during training the model 
receives the ground truth output 𝑦 "

as input at time 𝑡 + 1.
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Computing the gradient

• 𝐿 " = −∑𝑝+ log 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝑜+
" = −∑𝑝+ log 9𝑦+

"

•
,- !

,."
! = − ,

,."
! ∑/0+ 𝑝/ log 9𝑦/

" + 𝑝+ log 9𝑦+
"

q
,

,."
! log 9𝑦+

" = 1 − 9𝑦+
"

q
,

,."
! ∑/0+ 𝑝/ log 9𝑦/

" = ,
,."

! ∑/0+ 𝑝/𝑜/
" + ∑/0+ 𝑝/ log∑1 exp 𝑜1

" =

∑/0+ 𝑝/ 9𝑦+
" = 9𝑦+

" ∑/0+ 𝑝/ = 9𝑦+
" 1 − 𝑝+

•
,- !

,."
! = −𝑝+ 1 − 9𝑦+

" − 1 − 𝑝+ 9𝑦+
" = −𝑝+ + 9𝑦+

"

•
,- !

,."
! = 9𝑦+

(") − 𝟏+,3(!)

∇𝒐 𝒕 𝐿 " = M𝒚 𝒕 − 𝟏3(!)
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Computing the gradient

• ∇𝒉 𝝉 𝐿 = 𝑉2∇𝒐 𝝉 𝐿

• ∇𝒂 𝝉 𝐿 = 5𝒉 𝝉

5𝒂 𝝉

2
∇𝒉 𝝉 𝐿 = 𝑑𝑖𝑎𝑔 1 − ℎ & " ∇𝒉 𝝉 𝐿

• ∇𝒉 𝝉#𝟏 𝐿 = 𝑊2∇𝒂 𝝉 𝐿 + 𝑉2∇𝒐 𝝉#𝟏 𝐿
∇𝒉 𝝉#𝟏 𝐿 = 𝑊2𝑑𝑖𝑎𝑔 1 − ℎ & " ∇𝒉 𝝉 𝐿 + 𝑉2∇𝒐 𝝉#𝟏 𝐿

• Valid for any 𝑡 < 𝜏
∇𝒉 𝒕 𝐿 = 𝑊2𝑑𝑖𝑎𝑔 1 − ℎ '6$ " ∇𝒉 𝒕&𝟏 𝐿 + 𝑉2∇𝒐 𝒕 𝐿

for 𝑡 = 1,… , 𝜏:
𝑎 ! = 𝑏 +𝑊ℎ !"# + 𝑈𝑥(!)

ℎ ! = tanh 𝑎 !

𝑜 ! = 𝑐 + 𝑉 ℎ !

L𝑦 ! = softmax 𝑜 !
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Gradients on the parameter nodes

• ∇!𝐿 = ∑" ∇#(")𝐿

• ∇$𝐿 = ∑" ∇# " 𝐿 ℎ " $

• ∇%𝐿 = ∑" ∇&(")𝐿 = ∑" 𝑑𝑖𝑎𝑔 1 − ℎ " % ∇𝒉 𝒕 𝐿

• ∇(𝐿 = ∑" ∇& " 𝐿 ℎ ")* $ = ∑" 𝑑𝑖𝑎𝑔 1 − ℎ " % ∇𝒉 𝒕 𝐿 ℎ ")* $

• ∇+𝐿 = ∑" ∇& " 𝐿 𝑥 " $ = ∑" 𝑑𝑖𝑎𝑔 1 − ℎ " % ∇𝒉 𝒕 𝐿 𝑥 " $

for 𝑡 = 1,… , 𝜏:
𝑎 ! = 𝑏 +𝑊ℎ !"# + 𝑈𝑥(!)

ℎ ! = tanh 𝑎 !

𝑜 ! = 𝑐 + 𝑉 ℎ !

L𝑦 ! = softmax 𝑜 !



(Goodfellow 2016)

Fully Connected Graphical Model

Figure 10.7

One way to interpret an 
RNN as a graphical 
model is to view the RNN 
as defining a graphical 
model whose structure is 
the complete graph:

Here we consider a sequence of random 
variables 𝑦(") with no inputs 𝑥.
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RNN Graphical Model

Figure 10.8

(The conditional distributions for the 
hidden units are deterministic)

Incorporating the ℎ(') nodes 
in the graphical model 
decouples the past and the 
future, acting as an 
intermediate quantity 
between them.

RNNs obtain the same 
full connectivity but 
efficient parametrization
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RNN assumptions

• The price recurrent networks pay for their reduced number of 
parameters is that optimizing the parameters may be difficult.

• The parameter sharing used in recurrent networks relies on the 
assumption that the same parameters can be used for different 
time steps.

• The assumption is that the conditional probability distribution over 
the variables at time 𝑡 + 1 given the variables at time 𝑡 is stationary

• The RNN must have some mechanism for determining the length 
of the sequence:
q A special symbol corresponding to the end of a sequence
q an extra Bernoulli output to the model that represents the 

decision to either continue generation or halt generation at each 
time step.

q add an extra output to the model that predicts the sequence 
length 𝜏 itself, or 𝜏 − 𝑡, the number of remaining steps.
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Vector to Sequence

Figure 10.9

• An RNN that maps a fixed-
length vector 𝑥 into a distribution 
over sequences 𝑌. 

• This RNN is appropriate for 
tasks such as image captioning, 
where a single image is used as 
input to a model that then 
produces a sequence of words 
describing the image.

• Each element 𝑦(") of the 
observed output sequence 
serves both as input (for the 
current time step) and, during 
training, as target (for the 
previous time step).
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Hidden and Output Recurrence

Figure 10.10
The output values are not forced to be conditionally 

independent in this model.

• A conditional recurrent 
neural network mapping a 
variable-length sequence of 
𝑥 values into a distribution 
over sequences of 𝑦 values 
of the same length. 

• This RNN contains 
connections from the 
previous output to the 
current state.

• These connections allow 
this RNN to model an 
arbitrary distribution over 
sequences of 𝑦 given 
sequences of 𝑥 of the same 
length. 
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Bidirectional RNN

• We want to output a prediction of 𝑦(R) which may depend 
on the whole input sequence. 
q For example, in speech recognition, the correct 

interpretation of the current sound as a phoneme may 
depend on the next few phonemes because of co-
articulation and potentially may even depend on the 
next few words because of the linguistic 
dependencies between nearby words: 
o if there are two interpretations of the current word 

that are both acoustically plausible, we may have to 
look far into the future (and the past) to 
disambiguate them.

q This is also true of handwriting recognition and many 
other sequence-to-sequence learning tasks
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Bidirectional RNN

Figure 10.11

• Computation of a typical bidirectional 
recurrent neural network, meant to 
learn to map input sequences 𝑥 to 
target sequences 𝑦, with loss 𝐿(') at 
each step 𝑡.

• The ℎ recurrence propagates 
information forward in time (towards 
the right) while the 𝑔 recurrence 
propagates information backward in 
time (towards the left). 

• Thus at each point 𝑡, the output units 
𝑜(') can benefit from a relevant 
summary of the past in its ℎ(') input 
and from a relevant summary of the 
future in its 𝑔(') input.
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Sequence to Sequence Architecture

Figure 10.12

• RNN can be trained to map 
an input sequence to an 
output sequence which is 
not necessarily of the same 
length. 

• This comes up in many 
applications, such as 
speech recognition, 
machine translation or 
question answering.
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Deep RNNs
A recurrent neural network 
can be made deep in many 
ways. 
• (a) The hidden recurrent 

state can be broken down 
into groups organized 
hierarchically.

• (b) Deeper computation 
(e.g., an MLP) can be 
introduced in the input-to-
hidden, hidden-to-hidden 
and hidden-to-output parts. 
This may lengthen the 
shortest path linking 
different time steps. 

• (c)The path-lengthening 
effect can be mitigated by 
introducing skip 
connections.
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The challenge of long-term dependencies
Repeated Function Composition

• The x-axis is the coordinate of the initial state along a 
random direction in the 100-dimensional space. 

• The y-axis is a linear projection of a 100-dimensional 
hidden state down to a single dimension

• We can thus view this plot as a linear cross-section of a 
high-dimensional function. 

• The plots show the function after each time step, or 
equivalently, after each number of times the transition 
function has been composed.

• When composing many 
nonlinear functions (like 
the linear-tanh layer 
shown here), the result 
is highly nonlinear.

• the use of a squashing 
nonlinearity such as 
tanh can cause the 
recurrent dynamics to 
become bounded.

ℎ(") = 𝑊5ℎ("%()
ℎ " = 𝑊" 5ℎ(6)
𝑊 = 𝑄Λ𝑄5

ℎ " = 𝑄5Λ5𝑄ℎ 6
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Gated RNNs

• The most effective sequence models used in 
practical applications are called gated RNNs. 

• These include the long short-term memory (LSTM) 
and networks based on the gated recurrent unit 
(GRU) 
q Create paths through time that have derivatives 

that neither vanish nor explode 
q Accumulate information such as evidence for a 

particular feature or category,
q Forget the old state and start over. 
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LSTM

Figure 10.16

(1) An input feature 
is computed with a 
regular artificial 
neuron unit

(2) Its value can be
accumulated into the 
state if the sigmoidal 
input gate allows it.

(3) The state unit has a 
linear self-loop whose 
weight is controlled by 
the forget gate.

(4) The output of the cell can 
be shut off by the output 
gate.

All the gating units 
have a sigmoid 
nonlinearity, while 
the input unit can 
have any 
squashing 
nonlinearity

(5) The state unit can 
also be used as an
extra input to the gating 
units.

“LSTM cells” have an internal 
recurrence (a self-loop), in 
addition to the outer recurrence 
of the RNN
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LSTM

External	input	gate,	Cell	i,	time	step	t:

𝑔&
(!) = 𝜎 𝑏&

' +_
(

𝑈&,(
' 𝑥(

! +_
(

𝑊&,(
' ℎ(

!"#

State,	Cell	i,	time	step	t:

𝑠&
! = 𝑓&

! 𝑠&
!"# + 𝑔&

! 𝜎 𝑏& +_
(

𝑈&,(𝑥(
! +_

(

𝑊&,(ℎ(
!"#

Forget	gate,	Cell	i,	time	step	t:

𝑓&
! = 𝜎 𝑏&

* +_
(

𝑈&,(
* 𝑥(

! +_
(

𝑊&,(
* ℎ(

!"#

Output,	cell	i,	time	step	t:
ℎ&
(!) = tanh 𝑠&

! 𝑞&
(!)

Output	gate,	cell	I,	time	step	t:	

𝑞&
! = 𝜎 𝑏&+ +_

(

𝑈&,(+ 𝑥(
! +_

(

𝑊&,(
+ ℎ(

!"#

𝒙 " 𝒉 "%( 𝒙 " 𝒉 "%( 𝒙 " 𝒉 "%( 𝒙 " 𝒉 "%(

ℎ+
"

𝑞+
"𝑓+

"𝑔+
"

𝑠+
"
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LSTM networks

• LSTM networks have been shown to learn
long−term dependencies more easily than the
simple recurrent architectures,
q first on artificial data sets designed for testing the

ability to learn long−term dependencies
q then on challenging sequence processing tasks

where state−of−the−art performance was
obtained
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GRU

• The main difference with the LSTM is that a single gating unit 
simultaneously controls the forgetting factor and the decision to 
update the state unit.

ℎ'
( = 𝑢'

()* ℎ'
()* + 1 − 𝑢'

()* 𝜎 𝑏' +3
+

𝑈',+𝑥+
()* +3

+

𝑊',+𝑟+
()* ℎ+

()*

• Update gate: 

𝑢h
' = 𝜎 𝑏hi +'

j

𝑈h,ji 𝑥j
' +'

j

𝑊h,j
i ℎj

'

• Reset gate: 

𝑟h
' = 𝜎 𝑏hk +'

j

𝑈h,jk 𝑥j
' +'

j

𝑊h,j
k ℎj

'
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Watch

• https://www.youtube.com/watch?v=ZVN14xYm7JA
&feature=youtu.be

https://www.youtube.com/watch%3Fv=ZVN14xYm7JA&feature=youtu.be
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Farewell 

This lecture concludes our CMPS 392 

• But it does not conclude your journey with deep 
learning.

Congratulations


